Skip to main content

The Cerebral Microcirculation in Ischemia and Hypoxemia

The Arisztid G. B. Kovách Memorial Lecture

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 530))

Abstract

One of the most recognized aspects of Professor Kovách’s work is his extensive study on the mechanisms of hemorrhagic shock, particularly the role of sympathetic activation and vascular dysfunction in producing irreversible injury to vital organs. He was interested in the tolerance and limits of physiological adaptation of the circulatory system and how these tolerances were compromised, in particular in the brain, in shock, hypoxia and ischemia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames A, Wright RL, Kowada M, Thurston JM and Majno G. Cerebral ischemia II. The no-reflow phenomenon. Am J Pathol 1968;52:437–453.

    PubMed  Google Scholar 

  2. Bauer R, Iijima T and Hossmann KA Influence of severe hemodilution on brain function and brain oxidative metabolism in the cat. Intensive Care Med 1996;22:47–51.

    Article  PubMed  CAS  Google Scholar 

  3. Biswal B. Hudetz AG. Yetkin FZ. Haughton VM. Hyde JS. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J Cereb Blood Flow Metab 1997;17:301–308.

    Article  PubMed  CAS  Google Scholar 

  4. Cuevas P, Gutierrez-Diaz JA, Reimers D, Dujovny M, Diaz FG and Ausman JI. Pericyte endothelial gap junctions in human cerebral capillaries. Anat Embryol (Berlin) 1984;170:155–159.

    Article  CAS  Google Scholar 

  5. del Zoppo GJ. Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 1994; 6:47–96.

    PubMed  Google Scholar 

  6. Dirnagl U, Niwa K, Sixt G and Villringer A. Cortical hypoperfusion after global forebrain ischemia in rats is not caused by microvascular leukocyte plugging. Stroke 1994; 25:1028–1038.

    Article  PubMed  CAS  Google Scholar 

  7. Dodge AB, Hechtman HB and Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 1991;18:180–188.

    Article  PubMed  CAS  Google Scholar 

  8. Dóra E., Kovách AG. Effect of acute arterial hypo-and hypertension on cerebrocortical NAD/NADH redox state and vascular volume. J Cereb Blood Flow Metabol 1982; 2:209–219.

    Article  Google Scholar 

  9. Dóra E., and Kovách AG. Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physiol. Acad. Sci Hung 1981; 57:261–75.

    Google Scholar 

  10. Dóra E., Urbanics R. Effect of surplus amount of oxygen on the cerebrocortical microcirculatory reactions associated to moderate arterial hypotension. Acta Physiol Hung 1986; 67:213–21.

    PubMed  Google Scholar 

  11. Dóra E Effect of topically administered epinephrine, norepinephrine and acetylcholine on cerebralcortical vascular volume and NAD/NADH redox state. In: The Cerebral Veins (Auer LM and Loew F. Eds) Springer-Verlag Wien. New York. 1983;pp 193–199.

    Google Scholar 

  12. Ennis SR, Keep RF, Schielke GP and Betz AL. Decrease in perfusion of cerebral capillaries during incomplete ischemia and reperfusion. J Cereb Blood Flow Metab 1990;10:213–220.

    Article  PubMed  CAS  Google Scholar 

  13. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S and del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144:188–199.

    PubMed  CAS  Google Scholar 

  14. Gjedde A, Kuwabara H and Hakim AM. Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab 1990;10:317–326.

    Article  PubMed  CAS  Google Scholar 

  15. Haefliger IO, Zschauer A and Anderson DA. Relaxation of retinal pericyte contractile tone through the nitric-oxide-cyclic guanosine monophosphate pathway. Invest Opthalamol Vis Sci 1994;35:991–997.

    CAS  Google Scholar 

  16. Harder DR, Narayanan J, Gebremedhin D and Roman RJ Transduction of physical force by the vascular wall. Trends Cardiovasc Med 1995; 5:7–14.

    Article  PubMed  CAS  Google Scholar 

  17. Hudetz AG Blood flow in the cerebral capillary network: A review emphasizing observations with intravital microscopy. Microcirculation 1997;4:233–252.

    CAS  Google Scholar 

  18. Hudetz AG, Fehér G and Kampine JP. Heterogeneous autoregulation of cerebrocortical capillary flow: Evidence for functional thoroughfare channels? Microvasc Res 1996; 51:131–136.

    Article  PubMed  CAS  Google Scholar 

  19. Hudetz AG, Fehér G, Knuese DE and Kampine JP. Erythrocyte flow heterogeneity in the cerebrocortical capillary network. Adv Exp Med Biol 1994; 345:633–642.

    Article  PubMed  CAS  Google Scholar 

  20. Hudetz AG, Fehér G, Weigle CGM, Knuese DE and Kampine JP. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. Am J Physiol 1995; 268:H2202–H2210.

    PubMed  CAS  Google Scholar 

  21. Hudetz AG, Roman RJ and Harder DR. Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure. J Cereb Blood Flow Metab 1992;12:491–499.

    Article  PubMed  CAS  Google Scholar 

  22. Hudetz AG, Shen H and Kampine, JP. Nitric oxide from neuronal NOS plays critical role in cerebral capillary flow response to hypoxia. Am J Physiol 1998; 274:H982–989.

    PubMed  CAS  Google Scholar 

  23. Hudetz AG, Wood JD, Biswal BB, Krolo I and Kampine JP Effect of hemodilution on RBC velocity, supply rate and hematocrit in the cerebral capillary network. J Appl Physiol 1999; 87:505–509.

    PubMed  CAS  Google Scholar 

  24. Hudetz AG, Wood JD and Kampine JP (1999) Nitric oxide synthase inhibitor augments post-ischemic leukocyte adhesion in the cerebral microcirculation in vivo. Neurol. Res. 21:378–384.

    PubMed  CAS  Google Scholar 

  25. Kelley C, D’Amore P, Hechtman HB and Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. Journal of Muscle Research Cell Motil 1988; 9:184–194.

    Article  CAS  Google Scholar 

  26. Kovách, A.G. Cerebral circulation in hypoxia and ischemia. Progr Clin Biol Res 1988; 264:147–158.

    Google Scholar 

  27. Kovach AG, Dora E, Hamar J, Eke A and Szabo L Transient metabolic and vascular volume changes following rapid blood pressure alterations which precede the autoregulatory vasodilation of cerebral cortical vessels. Adv Exp Med Biol 1977;94: 705–711.

    PubMed  CAS  Google Scholar 

  28. Motti ED, Imhof HG and Yasargil MG. The terminal vascular bed in the superficial cortex of the rat. An SEM study of corrosion casts. J Neurosurg 1986; 65:834–846.

    Article  PubMed  CAS  Google Scholar 

  29. Nakai K, Imai H, Kamel I, Itakura T, Komari N, Kimura H, Nagai T and Meada T. Microangioarchitecture of rat parietal cortex with special reference to vascular sphincters. Stroke 1981;12:653–659.

    Article  PubMed  CAS  Google Scholar 

  30. Nehls V and Drenckhahn D. The versatility of microvascular pericytes: From mesenchyme to smooth muscle? Histochemistry 1993; 99:1–12.

    Article  PubMed  CAS  Google Scholar 

  31. Pfeifer RA. (1928) In: Die Angioarchitectonik der Grosshirnrinde Eds.) Springer. Berlin.

    Google Scholar 

  32. Wei EP and Kontos HA Responses of pial arterioles to increased venous pressure. J Cereb Blood Flow Metab 1981;1: S329.

    Article  Google Scholar 

  33. Woolsey TA, Rovainen CM, Cox SB, Henegar MH, Liang GE, Liu D, Moskalenko YE, Sui J and Wei L. Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb Cortex 1996;6:647–660.

    Article  PubMed  CAS  Google Scholar 

  34. Yamakawa T, Yamaguchi S, Niimi H and Sugiyama I. White blood cell plugging and blood flow maldistribution in the capillary network of cat cerebral cortex in acute hemorrhagic hypotension: An intravital microscopic study. Circ Shock 1987;22:323–332.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hudetz, A.G. (2003). The Cerebral Microcirculation in Ischemia and Hypoxemia. In: Dunn, J.F., Swartz, H.M. (eds) Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol 530. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0075-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0075-9_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4912-9

  • Online ISBN: 978-1-4615-0075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics