Skip to main content

The Bacterial Scaffoldin: Structure, Function and Potential Applications in the Nanosciences

  • Chapter
Book cover Genetic Engineering

Part of the book series: Genetic Engineering: Principles and Methods ((GEPM,volume 25))

Abstract

Natural protein complexes may provide the best templates for nanometer-scale technology and new biomaterials. The bacterial cellulosome is becoming a well-understood multi-protein complex found in cellulolytic microorganisms. The scaffoldin subunits of the bacterial cellulosome function to organize and position other protein subunits into the complex. The scaffoldins can also serve as an attachment device for harnessing the cellulosome onto the cell surface and/or for its targeting to substrate. Biochemical and molecular biological evidence have identified a receptor/adaptor type of protein domain pair, called “cohesin and dockerin,” which is responsible for cellulosome self-assembly. The recognition between cohesin and dockerin is generally type and/or species specific. More than 80 cohesin and 100 dockerin sequences have been found, mostly from anaerobic bacteria. X-ray crystallography and NMR have been used to determine the three-dimensional structures of representative cohesin and dockerin domains, respectively. The cohesin peptide is about 140 amino acids in length and highly conserved in sequence and domain structure. The dockerin domain comprises about 70 amino acids and contains two 22 amino acid duplicated regions, each of which includes an “F-hand” modification of the EF-hand calcium-binding motif. Biochemical evidence and site-directed mutagenesis have confirmed that the two F-hand motifs are required for function and calcium dependence; at least two amino acids from each motif are critical for cohesin-dockerin recognition. In this report, we review the structure and function of the scaffoldin of the bacterial cellulosome and emphasize a detailed sequence analysis of the cohesin and dockerin domains. We also speculate about potential applications in nanoscience that may be based on cohesin-dockerin recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, S. and Thornton, J.M. (1996) Proc. Nat. Acad. Sci. U.S.A. 93, 13–20.

    Article  CAS  Google Scholar 

  2. Yeates, O.Y. and Padilla, J.E. (2002) Curr. Opin. Struct. Bio. 12, 464–470.

    Article  CAS  Google Scholar 

  3. Lowe, C.R. (2000) Curr. Opin. Struct. Biol. 10, 428–434.

    Article  PubMed  CAS  Google Scholar 

  4. Coutinho, P.M. and Henrissat, B. (1999) CAZyModO Websitehttp://afmb.cnrs-mrs.fr/--pedro/DB/db.html

    Google Scholar 

  5. Coutinho, P.M. and Henrissat, B. (1999) In Genetics, Biochemistry and Ecology of Cellulose Degradation (K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita and T. Kimura, eds.), pp. 15–23. Uni Publishers Co., Tokyo.

    Google Scholar 

  6. Bayer, E.A., Kenig, R. and Lamed, R. (1983) J. Bacteriol. 156, 818–827.

    PubMed  CAS  Google Scholar 

  7. Bayer, E.A., Setter, E. and Lamed, R. (1985) J. Bacteriol. 163, 552–559.

    PubMed  CAS  Google Scholar 

  8. Bayer, E.A. and Lamed, R. (1986) J. Bacteriol. 167, 828–836.

    PubMed  CAS  Google Scholar 

  9. Lamed, R., Setter, E. and Bayer, E.A. (1983) J. Bacteriol. 156, 828–836.

    PubMed  CAS  Google Scholar 

  10. Lamed, R., Naimark, J., Morgenstern, E. and Bayer, E.A. (1987) J. Microbiol. Methods 7, 233–240.

    Article  Google Scholar 

  11. Lamed, R. and Bayer, E.A. (1988) Adv. Appl. Microbiol. 33, 1–46.

    Article  Google Scholar 

  12. Lamed, R., Setter, E., Kenig, R. and Bayer, E.A. 1983. The Cellulosome a Discrete Cell Surface Organelle ofClostridium thermocellumwhich exhibits separate Antigenic, Cellulose-binding and various Cellulolytic Activities. Biotechnol. Bioeng. Symp. 13, 163–181.

    CAS  Google Scholar 

  13. Lamed, R., Naimark, J., Morgenstern, E. and Bayer, E.A. (1987) J. Bacteriol. 169, 3792–3800.

    PubMed  CAS  Google Scholar 

  14. Mayer, F., Coughlan, M.P., Mori, Y. and Ljungdahl, L.G. (1987) Appl. Environ. Microbiol. 53, 2785–2792.

    PubMed  CAS  Google Scholar 

  15. Borneman, W.S., Ljungdahl, L.G., Hartley, R.D. and Akin, D.E. (1993) In Hemicellulose and Hemicellulases (M. P. Coughlan and G. P. Hazlewood, eds.), pp. 85–102. Portland Press, London.

    Google Scholar 

  16. Chen, H., Li, L.X., Blum, D.L. and Ljungdahl, L.G. (1998) FEMS Microbiol. Lett. 159, 63–68.

    Article  PubMed  CAS  Google Scholar 

  17. Gilbert, H.J., Hazlewood, G.P., Laurie, J.I., Orpin, C.G. and Xue, G.P. (1992) Mol. Microbiol. 6, 2065–2072.

    Article  PubMed  CAS  Google Scholar 

  18. Raghothama, S., Eberhardt, R.Y., Simpson, P., Wigelsworth, D., White, P., Hazlewood, G.P., Nagy, T., Gilbert, H.J. and Williamson, M.P. (2001) Nature Struct. Biol. 8, 775–778.

    Article  PubMed  CAS  Google Scholar 

  19. Bayer, E.A., Morag, E. and Lamed, R. (1994) Trends Biotechnol. 12, 378–386.

    Article  Google Scholar 

  20. Schwarz, W.H. (2001). Appl. Microbiol. Biotechnol. 56, 634–649.

    Article  PubMed  CAS  Google Scholar 

  21. Bayer, E.A., Chanzy, H., Lamed, R. and Shoham, Y. (1998) Curr. Opin. Struct. Biol. 8, 548–557.

    Article  PubMed  CAS  Google Scholar 

  22. Bayer, E.A., Shimon, L.J.W., Lamed, R. and Shoham, Y. (1998) J. Struct. Biol. 124,221–234.

    Article  PubMed  CAS  Google Scholar 

  23. Bayer, E.A., Shoham, Y. and Lamed, R. (2000) In Glycomicrobiology, (R.J. Doyle, ed.), pp. 387–439. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  24. Béguin, P. and Lemaire, M. (1996) Crit. Rev. Biochem. Mol. Biol. 31, 201–236.

    Article  PubMed  Google Scholar 

  25. Bélaich, J.-P., Tardif, C., Bélaich, A. and Gaudin, C. (1997) J. Biotechnol. 57, 3–14.

    Article  PubMed  Google Scholar 

  26. Coughlan, M.P. and Mayer, F. (1992) In The Prokaryotes (A. Balows, H.G. Triiper, M. Dworkin, W. Harder and K.-H. Schleifer, eds.), 2nd ed, vol. I. pp. 459–516. Springer-Verlag, New York.

    Google Scholar 

  27. Doi, R.H. and Tamura, Y. (2001) Chem. Rec. 1, 24–32.

    Article  PubMed  CAS  Google Scholar 

  28. Doi, R.H., Goldstein, M., Hashida, S., Park, J.S. and Takagi, M. (1994) Crit. Rev. Microbiol. 20, 87–93.

    Article  PubMed  CAS  Google Scholar 

  29. Felix, C.R. and Ljungdahl L.G. (1993) Annu. Rev. Microbiol. 47, 791–819.

    Article  PubMed  CAS  Google Scholar 

  30. Shoham, Y., Lamed, R. and Bayer, E.A. (1999) Trends Microbiol. 7(7), 275–281.

    Article  PubMed  CAS  Google Scholar 

  31. Tamaru, Y., Liu, C.-C., Ichi-ishi, A., Malburg, L. and Doi, R.H. (1999). In Genetics, Biochemistry and Ecology of Cellulose Degradation (K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita and T. Kimura, eds.), pp. 488–494. Uni Publishers Co., Tokyo.

    Google Scholar 

  32. Boraston, A.B., McLean, B.W., Kormos, J.M., Alam, M., Gilkes, N.R., Haynes, C.A., Tomme, P., Kilburn, D.G. and Warren, R. A. (1999) In Recent Advances in Carbohydrate Bioengineering (H.J. Gilbert, G.J. Davies, B. Henrissat and B. Svensson, eds.), pp. 202–211. The Royal Society of Chemistry, Cambridge.

    Google Scholar 

  33. Chauvaux, S., Matuschek, M. and Béguin, P. (1999) J. Bacteriol. 181, 2455–2458.

    PubMed  CAS  Google Scholar 

  34. Linder, M. and Teeri, T.T. (1997) J. Biotechnol. 57, 15–28.

    Article  CAS  Google Scholar 

  35. Ding, S.-Y., Bayer, E.A., Steiner, D., Shoham, Y. and Lamed, R. (1999) J. Bacteriol. 181, 6720–6729.

    PubMed  CAS  Google Scholar 

  36. Ding, S.-Y., Bayer, E.A., Steiner, D., Shoham, Y. and Lamed, R. (2000) J. Bacteriol. 182, 4915–4925.

    Article  PubMed  CAS  Google Scholar 

  37. Ding, S.-Y., Rincon, M.T., Lamed, R., Martin, J.C., McCrae, S.I., Aurilia, V., Shoham, Y., Bayer, E.A. and Flint, H.J. (2001) J. Bacteriol. 183, 1945–1953.

    Article  PubMed  CAS  Google Scholar 

  38. Fujino, T., Béguin, P. and Aubert, J.P. (1993) J. Bacteriol. 175, 1891–1899.

    PubMed  CAS  Google Scholar 

  39. Gal, L., Pagès, S., Gaudin, C., Bélaich, A., Reverbel-Leroy, C., Tardif, C. and Bélaich, J.-P. (1997) Appl. Environ. Microbiol. 63, 903–909.

    PubMed  CAS  Google Scholar 

  40. Gerngross, U.T., Romaniec, M.P.M., Kobayashi, T., Huskisson, N.S. and Demain, A.L. (1993) Mol. Microbiol. 8, 325–334

    Article  PubMed  CAS  Google Scholar 

  41. Hilden, L., Eng, L., Johansson, G., Lindqvist, S.E. and Pettersson, G. (2001) Anal. Biochem. 290, 245–250.

    Article  PubMed  CAS  Google Scholar 

  42. Kakiuchi, M., Isui, A., Suzuki, K., Fujino, T., Fujino, E., Kimura, T., Karita, S., Sakka, K. and Ohmiya, K. (1998) J. Bacteriol. 180, 4303–4308.

    PubMed  CAS  Google Scholar 

  43. Karita, S., Sakka, K. and Ohmiya, K. (1997) In Rumen Microbes and Digestive Physiology in Ruminants (R. Onodera, H. Itabashi, K. Ushida, H. Yano and Y. Sasaki, eds.), pp. 47–57, Vol. 14. Japan Sci. Soc. Press, Tokyo/S.Karger, Basel.

    Google Scholar 

  44. Leibovitz, E. and Béguin, P. (1996) J. Bacteriol. 178, 3077–3084.

    PubMed  CAS  Google Scholar 

  45. Leibovitz, E., Ohayon, H., Gounon, P. and Béguin, P. (1997) J. Bacteriol. 179, 2519–2523.

    PubMed  CAS  Google Scholar 

  46. Lemaire, M., Ohayon, H., Gounon, P., Fujino, T. and Béguin, P. (1995) J. Bacteriol. 177, 2451–2459.

    PubMed  CAS  Google Scholar 

  47. Lemaire, M., Miras, I., Gounon, P. and Béguin, P. (1998) Microbiology 144, 211–217.

    Article  PubMed  CAS  Google Scholar 

  48. Nölling, J., Breton, G., Omelchenko, M.V., Makarova, K.S., Zeng, Q., Gibson, R., Lee, H.M., Dubois, J., Qiu, D., Hitti, J., GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf, Y.I., Tatusov, R.L. Sabathe, F., Doucette-Stamm, L., Soucaille, P., Daly, M.J., Bennett, G.N., Koonin, E.V. and Smith, D.R. (2001) J. Bacteriol. 183, 4823–4838.

    Google Scholar 

  49. Rincon, R., Ding, S.-Y., McCrae, S.I., Martin, J.C., Aurilia, V., Lamed R., Shoham, Y., Bayer, E.A. and Flint, H.J. (2003) J. Bacteriol. (in press).

    Google Scholar 

  50. Salamitou, S., Lemaire, M., Fujino, T., Ohayon, H., Gounon, P., Béguin, P. and Aubert, J.-P. (1994) J. Bacteriol. 176, 2828–2834.

    PubMed  CAS  Google Scholar 

  51. Shoseyov, O., Takagi, M., Goldstein, M.A. and Doi, R.H. (1992) Proc. Nat. Acad. Sci. U. S. A. 89, 3483–3487.

    Article  CAS  Google Scholar 

  52. Tamaru, Y., Karita, S., Ibrahim, A., Chan, H. and Doi, R.H. (2000) J. Bacteriol. 182, 5906–5910.

    Article  PubMed  CAS  Google Scholar 

  53. Sabathe, F., Bélaich, A. and Soucaille, P. (2003) FEMS Microbiol. Lett. (in press).

    Google Scholar 

  54. Pagès, S., Bélaich, A., Fierobe, H.-P., Tardif, C., Gaudin, C. and Bélaich, J.-P. (1999) J. Bacteriol. 181, 1801–1810.

    PubMed  Google Scholar 

  55. Shimon, L.J.W., Bayer, E.A., Morag, E., Lamed, R., Yaron, S., Shoham, Y. and Frolow, F. (1997) Structure 5, 381–390.

    Article  PubMed  CAS  Google Scholar 

  56. Spinelli, S., Fierobe, H.P., Bélaich, A., Bélaich, J.P., Henrissat, B. and Cambillau, C. (2000) J. Mol. Biol. 304, 189–200.

    Article  PubMed  CAS  Google Scholar 

  57. Tavares, G.A., Béguin, P. and Alzari, P.M. (1997) J. Mol. Biol. 273, 701–713.

    Article  PubMed  CAS  Google Scholar 

  58. Chauvaux, S., Béguin, P., Aubert, J.-P., Bhat, K.M., Gow, L.A., Wood, T.M. and Bairoch, A. (1990) Biochem. J. 265, 261–265.

    PubMed  CAS  Google Scholar 

  59. Yaron, S., Morag, E., Bayer, E.A., Lamed, R. and Shoham, Y. (1995) FEBS Lett. 360, 121–124.

    Article  PubMed  CAS  Google Scholar 

  60. Lytle, B.L., Volkman, B.F., Westler, W.M., Heckman, M.P. and Wu, J.H. (2001) J. Mol. Biol. 307, 745–753.

    Article  PubMed  CAS  Google Scholar 

  61. Lytle, B.L., Volkman, B.F., Westler, W.M. and Wu, J.H. (2000) Arch. Biochem. Biophys. 379, 237–244.

    Article  PubMed  CAS  Google Scholar 

  62. Ohara, H., Noguchi, J., Karita, S., Kimura, T., Sakka, K. and Ohmiya, K. (2000) Biosci. Biotechnol. Biochem. 64, 80–88.

    CAS  Google Scholar 

  63. Pegden, R.S., Larson, M.A., Grant, R.J. and Morrison, M. (1998) J. Bacteriol. 180, 5921–5927.

    PubMed  CAS  Google Scholar 

  64. Mechaly, A., Fierobe, H.-P., Bélaich, A., Bélaich, J.-P., Lamed, R., Shoham, Y. and Bayer, E.A. (2001) J. Biol. Chem. 276, 9883–9888.

    Article  PubMed  CAS  Google Scholar 

  65. Mechaly, A., Yaron, S., Lamed, R., Fierobe, H.-P., Bélaich, A., Bélaich, J.-P., Shoham, Y. and Bayer, E.A. (2000) Proteins 39, 170–177.

    Article  PubMed  CAS  Google Scholar 

  66. Pages, S., Bélaich, A., Bélaich, J.-P., Morag, E., Lamed, R., Shoham, Y. and Bayer, E.A. (1997) Proteins 29, 517–527.

    Article  PubMed  CAS  Google Scholar 

  67. Fierobe, H.-P., Pagès, S., Bélaich, A., Champ, S., Lexa, D. and Bélaich, J.-P. (1999) Biochemistry 38, 12822–12832.

    Article  Google Scholar 

  68. Salamitou, S., Raynaud, O., Lemaire, M., Coughlan, M., Béguin, P. and Aubert, J.-P. (1994) J. Bacteriol. 176, 2822–2827.

    PubMed  CAS  Google Scholar 

  69. Tokatlidis, K., Salamitou, S., Béguin, P., Dhurjati, P. and Aubert, J.-P. (1991) FEBS Lett. 291, 185–188.

    Article  PubMed  CAS  Google Scholar 

  70. Guo P. (2002) Prog. Nucl. Acid Res. Mol. Biol. 72, 415–472.

    CAS  Google Scholar 

  71. Hess, H. and Vogel, V. (2001) Rev. Mol. Biotechnol. 82, 67–85.

    Article  CAS  Google Scholar 

  72. Fierobe, H.-P., Bayer, E.A., Tardif, C., Czjzek, M., Mechaly, A., Bélaich, A., Lamed, R., Shoham, Y. and Bélaich, J.-P. (2002) J. Biol. Chem. 277, 49621–49630.

    Article  PubMed  CAS  Google Scholar 

  73. Fierobe H.-P., Mechaly, A., Tardif, C., Bélaich, A., Lamed, R., Shoham, Y., Bélaich, J.-P. and Bayer, E.A. (2001) J. Biol. Chem. 276, 21257–21261.

    Article  PubMed  CAS  Google Scholar 

  74. Woggon, U. (1997) Optical Properties of Semiconductor Quantum Dots. Vol. 136 Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  75. Gaponenko, S.V. (1998) Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  76. Merkle, R. C. (2000) Nanotechnology 11, 89.

    Article  CAS  Google Scholar 

  77. Ding, S.-Y., Rumbles, G., Adney, W.S., Jones, M., Nedeljkovic, J., Tucker, M.P., Nozik, A.J. and Himmel, M.E. (2002) 25thDOE OS Photochemistry Program Meeting, Warrenton, VA, June 9–12, 2002

    Google Scholar 

  78. Ding, S.-Y., Himmel, M.E., Adney, W.S., Tucker, M.P., Wall, J., Nedeljkovic, J., Micic, O.I., Jones, M., Nozik, A.J. and Rumbles, G. (2003) To be presented at the MRS Symposium H: Bio-Inspired Nanoscale Hybrid Systems, San Francisco, CA, Spring 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ding, SY., Lamed, R., Bayer, E.A., Himmel, M.E. (2003). The Bacterial Scaffoldin: Structure, Function and Potential Applications in the Nanosciences. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering: Principles and Methods, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0073-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0073-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4911-2

  • Online ISBN: 978-1-4615-0073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics