Functional Studies of AIPL1

Potential role of AIPL1 in cell cycle exit and/or differentiation of photoreceptors
  • Dayna T. Akey
  • Xuemei Zhu
  • Michael Dyer
  • Amin Li
  • Adam Sorensen
  • Taeko Fukada-Kamitani
  • Stephen P. Daiger
  • Cheryl Craft
  • Tetsu Kamitani
  • Melanie M. Sohocki
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 533)

Abstract

Leber congenital amaurosis (LCA) is a genetically heterogeneous, autosomal recessive retinal degenerative disease responsible for approximately 5% of all inherited retinopathies (Kaplan et al., 1990). LCA is often considered the most severe form of childhood retinopathy, and infants with this disease are usually blind at birth. To date, mutations in six genes have been found to cause LCA and two additional loci have been mapped (www.sph.uth.tmc.edu/RetNet/). Recently, we identified the fourth LCA associated gene, the aryl hydrocarbon receptor interacting protein-like 1(AIPL1)(Sohocki et al., 2000a). Mutations in AIPL1 are estimated to account for approximately 7-9% of LCA cases worldwide and have been found to cause autosomal dominant cone-rod dystrophy (Sohocki et al., 2000b). Mutations in the aryl hydrocarbon receptor-interacting protein-like 1(AIPL1)gene have been found to cause autosomal recessive Leber congenital amaurosis (LCA), an early onset form of retinal degeneration. AsAIPL1is a novel gene, it is necessary to determine its normal function to better understand how mutations in this gene lead to disease.

Keywords

Hydration Lithium Retina Proline Interferon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K., eds., 19942001Current protocols in molecular biology.John Wiley & Sons, Inc., New York, NY. Vol. 2, pp. 13.6.213.6.5.Google Scholar
  2. Blatch, G.L. and Lassie, M., 1999, The tetratricopeptide repeat: a structural motif mediating protein-protein interactions.BioEssays.21:932–939.PubMedCrossRefGoogle Scholar
  3. Chau B.N., Cheng E.H., Kerr D.A., and Hardwick J.M., 2000, Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1.Mol Cell.6:31–40.PubMedGoogle Scholar
  4. Craft, C.M., Xu, J., Slepak, V.Z., Zhan-Poe, X., Zhu, X., Brown, B., and Lolley, R.N., 1998, PhLPs and PhLOPs in the phosducin family of G beta gamma binding proteins.Biochemistry.37:15758–15772.PubMedCrossRefGoogle Scholar
  5. Dyer, M.A. and Cepko, C.L., 2000, p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina.Development.127:3593–605.PubMedGoogle Scholar
  6. Dyer, M.A. and Cepko, C.L., 2001, p27Kipl and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations.J Neurosci.21:4259–71.PubMedGoogle Scholar
  7. Kaplan, J., Bonneau, D., Frezal, J., Munnich, A., and Dufier, J.L., 1990, Clinical and genetic heterogeneity in retinitis pigmentosa.Hum. Genet.85:635–642.PubMedCrossRefGoogle Scholar
  8. Kay, B.K., Williamson, M.P., and Sudol, M., 2000, The importance of being proline: the interaction of prolinerich motifs in signaling proteins with their cognate domains.FASEBJ.14:231–231.Google Scholar
  9. Kazlauskas, A., Poellinger, L., and Pongratz, I., 2000, The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor.J. Biol.Chem.275:41317–41324.PubMedCrossRefGoogle Scholar
  10. Kito, K., Yeh E.T.H., and Kamitani, T., 2001, NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression.J. Biol. Chem.276:20603–20609.PubMedCrossRefGoogle Scholar
  11. Ma, Q. and Whitlock J.P., 1997, A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2, 3,7,8-tetrachlorodibenzo-pdioxin.J. Biol. Chem.272:8878–8884.PubMedCrossRefGoogle Scholar
  12. Sohocki, M.M., Bowne, S.J., Sullivan, L.S., Blackshaw, S., Cepko, C.L., Payne, A.M., Bhattacharya, S.S., Khaliq, S., Mehdi, S.Q., Birch D.G.et al.2000a, Mutations in the novel photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat. Genet. 24:79–83.CrossRefGoogle Scholar
  13. Sohocki, M.M., Perrault, I., Leroy, B.P., Payne, A.M., Dharmaraj, S., Bhattacharya, S.S., Kaplan, J., Maumenee, 1.H., Koenekoop, R., Meire, F.M.et al.2000b, Prevalence of AIPLlmutations in inherited retinal degenerative disease. Molec. Genet. Metab. 70:142–150.CrossRefGoogle Scholar
  14. Sohocki, M.M., Sullivan, L.S., Tirpak, D.L., and Daiger, S.P., 2001, Comparative analysis of aryl-hydrocarbon receptor interacting protein-like 1 (Aip11), a gene associated with inherited retinal disease in humans.Mamm Genome.12:566–8.PubMedCrossRefGoogle Scholar
  15. Zhu, X. and Craft, C.M., 1998, Interaction of phosducin and phosducin isoforms with a 26S proteasomal subunit, SUG1.Mol. Vis.4:13–20.PubMedGoogle Scholar
  16. Zhu, X. and Craft, C.M., 2000, Modulation of CRX transactivation activity by phosducin isoforms.Mol. Cell Biol.20:5216–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Dayna T. Akey
    • 1
  • Xuemei Zhu
    • 2
  • Michael Dyer
    • 3
  • Amin Li
    • 2
  • Adam Sorensen
    • 4
  • Taeko Fukada-Kamitani
    • 5
  • Stephen P. Daiger
    • 5
  • Cheryl Craft
    • 2
  • Tetsu Kamitani
    • 5
  • Melanie M. Sohocki
    • 4
  1. 1.University of CincinnatiCincinnatiUSA
  2. 2.Keck School of Medicine of the University of Southern CaliforniaLos AngelesUSA
  3. 3.St. Jude Children’s Research HospitalMemphisUSA
  4. 4.Columbia UniversityNew YorkUSA
  5. 5.University of TexasHoustonUSA

Personalised recommendations