Structural Basis for Bacterial Adhesion in the Urinary Tract

  • Jenny Berglund
  • Stefan D. Knight
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 535)

Abstract

Most bacterial infections occur in the respiratory, gastrointestinal, or urinary tract. These spaces offer attractive advantages for bacteria in the form of nutrient availability, and are readily accessible from the outside world. In many cases bacterial habitation is not compatible with well being of the host, and mammals have developed powerful counter-measures and clearance mechanisms in order to limit bacterial colonization. Pathogenic bacteria have in turn developed solutions to overcome these challenges. One of the first obstacles facing bacteria striving to colonize one of the epithelial tracts is the cleansing action exerted by the flow of, for example, saliva, mucus, or urine. It is therefore no surprise that bacterial pathogenesis frequently involves adhesion of the pathogen to host epithelial tissues, and that adhesion in many cases is a first crucial event in establishing colonization and infection.

Keywords

Sugar Carbohydrate Luminal Mane Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäckhed, F., Alsen, B., Roche, N., Angstrom, J., von Euler, A., Breimer, M.E., Westerlund-Wikstrom, B., Teneberg, S., and Richter-Dahlfors, A., 2002, Identification of target tissue glycosphingolipid receptors for uropathogenic, FlC-fimbriated Escherichia coli and its role in mucosal inflammation, J Biol Chem. 277:18198–18205.PubMedCrossRefGoogle Scholar
  2. Bahrani-Mougeot, F.K., Buckles, E.L., Lockatell, C.V., Hebel, J.R., Johnson, D.E., Tang, C.M., and Donnenberg, M.S., 2002, Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract, Mol Microbiol. 45:1079–1093.PubMedCrossRefGoogle Scholar
  3. Baorto, D.M., Gao, Z., Malaviya, R., Dustin, M., van der Merwe, A., Lublin, D.M., and Abraham, S.N., 1997, Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic, Nature. 389:636–639.PubMedCrossRefGoogle Scholar
  4. Barnhart, M.M., Pinkner, J.S., Soto, G.E., Sauer, F.G., Langermann, S., Waksman, G., Frieden, C., and Hultgren, S.J., 2000, PapD-like chaperones provide the missing information for folding of pilin proteins, Proc Natl Acad Sci USA. 97:7709–7714.PubMedCrossRefGoogle Scholar
  5. Brinton, C.C. Jr., 1965, The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria, Trans N Y Acad Sci. 27:1003–1054.PubMedCrossRefGoogle Scholar
  6. Bullitt, E., Jones, C.H., Striker, R., Soto, G., Jacob-Dubuisson, E, Pinkner, I, Wick, M.J., Makowski, L., and Hultgren, S.J., 1996, Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper, Proc Natl Acad Sci USA. 93:12890–12895.PubMedCrossRefGoogle Scholar
  7. Bullitt, E. and Makowski, L., 1995, Structural polymorphism of bacterial adhesion pili, Nature. 373:164–167.PubMedCrossRefGoogle Scholar
  8. Carnoy, C. and Moseley, S.L., 1997, Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins, Mol Microbiol. 23:365–379.PubMedCrossRefGoogle Scholar
  9. Chapman, D.A., Zavialov, A.V., Chernovskaya, T.V., Karlyshev, A.V., Zav’yalova, G.A., Vasiliev, A.M., Dudich, I.V., Abramov, V.M., Zav’yalov, VP, and MacIntyre, S., 1999, Structural and functional significance of the FGL sequence of the periplasmic chaperone CaflM of Yersinia pestis, J Bacteriol. 181:2422–2429.PubMedGoogle Scholar
  10. Choudhury, D., 2001, Functional Implications of Macromolecular Recognition: Assembly of Adhesive Pili and Enzyme Substrate Interactions. Thesis. Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  11. Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S.J., and Knight, S.D., 1999, X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli, Science. 285:1061–1066.PubMedCrossRefGoogle Scholar
  12. Connell, H., Agace, W., Klemm, P., Schembri, M., Marild, S., and Svanborg, C., 1996, Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract, Proc Natl Acad Sci USA. 93:9827–9832.PubMedCrossRefGoogle Scholar
  13. Dodson, K.W., Jacob-Dubuisson, F., Striker, R.T., and Hultgren, S.J., 1993, Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes, Proc Natl Acad Sci USA. 90:3670–3674.PubMedCrossRefGoogle Scholar
  14. Dodson, K.W., Pinkner, J.S., Rose, T., Magnusson, G., Hultgren, S.J., and Waksman, G., 2001, Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor, Cell. 105:733–743.PubMedCrossRefGoogle Scholar
  15. Firon, N., Ashkenazi, S., Mirelman, D., Ofek, I., and Sharon, N., 1987, Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells, Infect Immun. 55:472–476.PubMedGoogle Scholar
  16. Firon, N., Ofek, I., and Sharon, N., 1982, Interaction of mannose-containing oligosaccharides with the fimbrial lectins of Escherichia coli, Biochem Biophys Res Commun. 105:1426–1432.PubMedCrossRefGoogle Scholar
  17. Firon, N., Ofek, I., and Sharon, N., 1983, Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydr Res. 120:235–249.PubMedCrossRefGoogle Scholar
  18. Firon, N., Ofek, I., and Sharon, N., 1984, Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria, Infect Immun. 43:1088–1090.PubMedGoogle Scholar
  19. Foxman, B., 2002, Epidemiology of urinary tract infections: incidence, morbidity, and economic costs, Am J Med. 113Suppl 1A:5S–13S.PubMedCrossRefGoogle Scholar
  20. Foxman, B., Zhang, L., Palin, K., Tallman, P., and Marrs, C.F., 1995, Bacterial virulence characteristics of Escherichia coli isolates from first-time urinary tract infection. J Infect Dis. 171:1514–1521.PubMedCrossRefGoogle Scholar
  21. Gong, M. and Makowski, L., 1992, Helical structure of P pili from Escherichia coli. Evidence from X-ray fiber diffraction and scanning transmission electron microscopy, J Mol Biol. 228:735–742.PubMedCrossRefGoogle Scholar
  22. Goodsell, D.S. and Olson, A.J., 1990, Automated docking of substrates to proteins by simulated annealing, Prot Struct Func Genet. 8:1040–1045.Google Scholar
  23. Gupta, K., Sahm, D.F., Mayfield, D., and Stamm, W.E., 2001, Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: A nationwide analysis, Clin Infect Dis. 33:89–94.PubMedCrossRefGoogle Scholar
  24. Hahn, E., Wild, P., Hermanns, U, Sebbel, P., Glockshuber, R., Haner, M., Taschner, N., Burkhard, P., Aebi, U, and Muller, S.A., 2002, Exploring the 3D Molecular Architecture of Escherichia coli Type 1 Pili. J Mol Biol. 323:845–857.PubMedCrossRefGoogle Scholar
  25. Hanisch, F.G., Hacker, J., and Schroten, H., 1993, Specificity of S fimbriae on recombinant Escherichia coli: preferential binding to gangliosides expressing NeuGc alpha (2–3)Gal and NeuAc alpha (2–8)NeuAc, Infect Immun. 61:2108–2115.PubMedGoogle Scholar
  26. Holmgren, A. and Branden, C.I., 1989, Crystal structure of chaperone protein PapD reveals an immunoglobulin fold, Nature. 342:248–251.PubMedCrossRefGoogle Scholar
  27. Hung, C.S., Bouckaert, J., Hung, D., Pinkner, J., Widberg, C., DeFusco, A., Auguste, C.G., Strouse, R., Langermann, S., Waksman, G., and Hultgren, S.J., 2002, Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection, Mol Microbiol. 44:903–915.PubMedCrossRefGoogle Scholar
  28. Hung, D.L., Knight, S.D., and Hultgren, S.J., 1999, Probing conserved surfaces on PapD, Mol Microbiol. 31:773–783.PubMedCrossRefGoogle Scholar
  29. Hung, D.L., Knight, S.D., Woods, R.M., Pinkner, J.S., and Hultgren, S.J., 1996, Molecular basis of two subfamilies of immunoglobulin-like chaperones, EMBO J. 15:3792–3805.PubMedGoogle Scholar
  30. Johnson, J.R., 1991, Virulence factors in Escherichia coli urinary tract infection, Clin Microbiol Rev. 4:80–128.PubMedGoogle Scholar
  31. Johnson, J.R., Manges, A.R., O’Bryan, T.T., and Riley, L.W., 2002, A disseminated multidrug-resistant clonal group of uropathogenic Escherichia coli in pyelonephritis, Lancet. 359:2249–2251.PubMedCrossRefGoogle Scholar
  32. Jones, C.H., Danese, P.N., Pinkner, J.S., Silhavy, T.J., and Hultgren, S.J., 1997, The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems, EMBO J. 16:6394–6406.PubMedCrossRefGoogle Scholar
  33. Jones, C.H., Dodson, K., and Hultgren, S.J., 1996, Structure, function and assembly of adhesive pili, in: Urinary tract infection: molecular pathogenesis to clinical management, H.L.T. Mobley and J.W. Warren, eds. (ASM), pp. 175–219.Google Scholar
  34. Jones, C.H., Pinkner, J.S., Roth, R., Heuser, J., Nicholes, A.V., Abraham, S.N., and Hultgren, S.J., 1995, FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae, Proc Natl Acad Sci USA. 92:2081–2085.PubMedCrossRefGoogle Scholar
  35. Khan, A.S., Kniep, B., Oelschlaeger, T.A., Van Die, I., Korhonen, T., and Hacker, J., 2000, Receptor structure for F1C fimbriae of uropathogenic Escherichia coli, Infect Immun. 68:3541–3547.PubMedCrossRefGoogle Scholar
  36. Kihlberg, J., Hultgren, S.J., Normark, S., and Magnusson, G., 1989, Probing the combining site of the PapG adhesin of uropathogenic Escherichia coli bacteria by synthetic analogs of galabiose, J Am Chem Soc. 111:6364–6368.CrossRefGoogle Scholar
  37. Klemm, P. and Christiansen, G., 1987, Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae, Mol Gen Genet. 208:439–445.PubMedCrossRefGoogle Scholar
  38. Klemm, P. and Christiansen, G., 1990, The fimD gene required for cell surface localization of Escherichia coli type 1 fimbriae, Mol Gen Genet. 220:334–338.PubMedCrossRefGoogle Scholar
  39. Klemm, P., Christiansen, G., Kreft, B., Marre, R., and Bergmans, H., 1994, Reciprocal exchange of minor components of type 1 and F1C fimbriae results in hybrid organelles with changed receptor specificities, J Bacteriol. 176:2227–2234.PubMedGoogle Scholar
  40. Klemm, P., Orskov, I., and Orskov, F., 1982, F7 and type 1-like fimbriae from three Escherichia coli strains isolated from urinary tract infections: protein chemical and immunological aspects, Infect Immun. 36:462–468.PubMedGoogle Scholar
  41. Knight, S.D., Berglund, J., and Choudhury, D., 2000, Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis, Curr Opin Chem Biol. 4:653–660.PubMedCrossRefGoogle Scholar
  42. Knight, S.D., Choudhury, D., Hultgren, S., Pinkner, J., Stojanoff, V., and Thompson, A., 2002, Structure of the S pilus periplasmic chaperone SfaE at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr. 58:1016–1022.PubMedCrossRefGoogle Scholar
  43. Korhonen, T.K., Parkkinen, J., Hacker, J., Finne, J., Pere, A., Rhen, M., and Holthofer, H., 1986, Binding of Escherichia coli S fimbriae to human kidney epithelium, Infect Immun. 54:322–327.PubMedGoogle Scholar
  44. Korhonen, T.K., Vaisanen-Rhen, V., Rhen, M., Pere, A., Parkkinen, J., and Finne, J., 1984, Escherichia coli fimbriae recognizing sialyl galactosides, J Bacteriol. 159:762–766.PubMedGoogle Scholar
  45. Korhonen, T.K., Valtonen, M.V., Parkkinen, J., Vaisanen-Rhen, V., Finne, J., Orskov, F, Orskov, I., Svenson, S.B., and Makela, P.H., 1985, Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis, Infect Immun. 48:486–491.PubMedGoogle Scholar
  46. Kuehn, M.J., Heuser, J., Normark, S., and Hultgren, S.J., 1992, P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips, Nature. 356:252–255.PubMedCrossRefGoogle Scholar
  47. Kuehn, M.J., Normark, S., and Hultgren, S.J., 1991, Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits, Proc Natl Acad Sci USA. 88:10586–10590.PubMedCrossRefGoogle Scholar
  48. Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T., and Hultgren, S.J., 1993, Structural basis of pilus subunit recognition by the PapD chaperone, Science. 262:1234–1241.PubMedCrossRefGoogle Scholar
  49. Kukkonen, M., Raunio, T., Virkola, R., Lähteenmäki, K., Mäkelä, P.H., Klemm, P., Clegg, S., and Korhonen, T.K., 1993, Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin, Mol Microbiol. 7:229–237.PubMedCrossRefGoogle Scholar
  50. Langermann, S., Mollby, R., Burlein, J.E., Palaszynski, S.R., Auguste, C.G., DeFusco, A., Strouse, R., Schenerman, M.A., Hultgren, S.J., Pinkner, J.S. et al., 2000, Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli, J Infect Dis. 181:774–778.PubMedCrossRefGoogle Scholar
  51. Langermann, S., Palaszynski, S., Barnhart, M., Auguste, G., Pinkner, J.S., Burlein, J., Barren, P., Koenig, S., Leath, S., Jones, C.H., and Hultgren, S.J., 1997, Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination, Science. 276:607–611.PubMedCrossRefGoogle Scholar
  52. Leffler, H. and Svanborg-Eden, C., 1981, Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells, Infect Immun. 34:920–929.PubMedGoogle Scholar
  53. Leffler, H. and Svanborg-Edén, C., 1980, Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes, FEMS Microbiol Lett. 8:127–134.CrossRefGoogle Scholar
  54. Lindberg, F., Lund, B., Johansson, L., and Normark, S., 1987, Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus, Nature. 328:84–87.PubMedCrossRefGoogle Scholar
  55. Lindhorst, T.K., 2002, Artificial multivalent sugar ligands to understand and manipulate carbohydrate-protein interaction, Topics Curr Chem. 218:201–235.CrossRefGoogle Scholar
  56. Lindhorst, T.K., Kieburg, C., and Krallmann-Wenzel, U., 1998, Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary alpha-mannosyl clusters: the effect of multivalency, Glycoconj J. 15:605–613.PubMedCrossRefGoogle Scholar
  57. Lund, B., Lindberg, F., Marklund, B.I., and Normark, S., 1987, The PapG protein is the alpha-D-galactopyranosyl-(1–4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli, Proc Natl Acad Sci USA. 84:5898–5902.PubMedCrossRefGoogle Scholar
  58. MacIntyre, S., Zyrianova, I.M., Chernovskaya, T.V., Leonard, M., Rudenko, E.G., Zav–Yalov, V.P., and Chapman, D.A., 2001, An extended hydrophobic interactive surface of Yersinia pestis Caf1M chaperone is essential for subunit binding and F1 capsule assembly, Mol Microbiol. 39:12–25.PubMedCrossRefGoogle Scholar
  59. Malagolini, N., Cavallone, D., Wu, X.-R., and Serafini-Cessi, F, 2000, Terminal glycosylation of bovine uroplakin III, one of the major integral-membrane glycoproteins of mammalian bladder, Biochim Biophys Acta. 1475:231–237.PubMedCrossRefGoogle Scholar
  60. Malaviya, R., Gao, Z., Thankavel, K., van der Merwe, P., and Abraham, S.N., 1999, The mast cell tumor necrosis factor a response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinosityl-anchored molecule CD48, Proc Natl Acad Sci USA. 96:8110–8115.PubMedCrossRefGoogle Scholar
  61. Marre, R., Hacker, J., Henkel, W., and Goebel, W., 1986, Contribution of cloned virulence factors from uropathogenic Escherichia coli strains to nephropathogenicity in an experimental rat pyelonephritis model, Infect Immun. 54:761–767.PubMedGoogle Scholar
  62. Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S., and Hultgren, S.J., 2000, Type 1 pilus-mediated bacterial invasion of bladder epithelial cells, EMBO J. 19:2803–2812.PubMedCrossRefGoogle Scholar
  63. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., 1998, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J Comput Chem. 19:1639–1662.CrossRefGoogle Scholar
  64. Morschhauser, J., Vetter, V., Korhonen, T., Uhlin, B.E., and Hacker, J., 1993, Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis, Zentralbl Bakteriol. 278:165–176.PubMedCrossRefGoogle Scholar
  65. Mulvey, M.A., 2002, Adhesion and entry of uropathogenic Escherichia coli, Cell Microbiol. 4:257–271.PubMedCrossRefGoogle Scholar
  66. Mulvey, M.A., Lopez-Boado, Y.S., Wilson, C.L., Roth, R., Parks, W.C., Heuser, J., and Hultgren, S.J., 1998, Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli, Science 282:1494–1497.PubMedCrossRefGoogle Scholar
  67. Mulvey, M.A., Schilling, J.D., and Hultgren, S.J., 2001, Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection, Infect Immun. 69:4572–4579.PubMedCrossRefGoogle Scholar
  68. Nagahori, N., Lee, R.T., Nishimura, S., Page, D., Roy, R., and Lee, Y.C., 2002, Inhibition of adhesion of Type 1 fimbriated Escherichia coli to highly mannosylated ligands, Chembiochem. 3:836–844.PubMedCrossRefGoogle Scholar
  69. Neeser, J.-R., Koellreutter, B., and Wuersch, P., 1986, Oligomannoside-type glycopeptides inhibiting adhesion of Escherichia coli strains mediated by type 1 pili: Preparation of potent inhibitors from plant glycoproteins, Infect Immun. 52:428–436.PubMedGoogle Scholar
  70. Nicolle, L.E., 2002, Resistant pathogens in urinary tract infections, J Am Geriatr Soc. 50:S230–235.PubMedCrossRefGoogle Scholar
  71. Nowicki, B., Selvarangan, R., and Nowicki, S., 2001, Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness, J Infect Dis. 183Suppl 1:S24–S27.PubMedCrossRefGoogle Scholar
  72. Nowicki, B., Svanborg-Eden, C., Hull, R., and Hull, S., 1989, Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli, Infect Immun. 57:446–451.PubMedGoogle Scholar
  73. Ohlsson, J., Jass, J., Uhlin, B.E., Kihlberg, J., and Nilsson, U.J., 2002, Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives, Chembiochem. 3:772–779.PubMedCrossRefGoogle Scholar
  74. Pak, J., Yongbing, P., Zhang, Z.-T, Hasty, D.L., and Wu, X.-R., 2001, Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin la and Ib receptors, J Biol Chem. 276:9924–9930.PubMedCrossRefGoogle Scholar
  75. Parkkinen, J., Rogers, G.N., Korhonen, T., Dahr, W., and Finne, J., 1986, Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli, Infect Immun. 54:37–42.Google Scholar
  76. Pascher, I., Lundmark, M., Nyholm, P.G., and Sundeil, S., 1992, Crystal structures of membrane lipids, Biochim BiophysActa. 1113:339–373.CrossRefGoogle Scholar
  77. Pellecchia, M., Guntert, P., Glockshuber, R., and Wuthrich, K., 1998, NMR solution structure of the periplasmic chaperone FimC, Nat Struct Biol. 5:885–890.PubMedCrossRefGoogle Scholar
  78. Pellecchia, M., Sebbel, P., Hermanns, U., Wuthrich, K., and Glockshuber, R., 1999, Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR, Nat Struct Biol. 6:336–339.PubMedCrossRefGoogle Scholar
  79. Pouttu, R., Puustinen, T., Virkola, R., Hacker, R., Klemm, P., and Korhonen, T.K., 1999, Amino acid residue Ala-62 in the FimH fimbrial adhesin is critical for the adhesiveness of meningitis-associated Escherichia coli to collagens, Mol Microbiol. 31:1747–1757.PubMedCrossRefGoogle Scholar
  80. Prasadarao, N.V., Wass, C.A., Hacker, J., Jann, K., and Kim, K.S., 1993, Adhesion of S-fimbriated Escherichia coli to brain glycolipids mediated by sfaA gene-encoded protein of S-fimbriae, J Biol Chem. 268:10356–10363.PubMedGoogle Scholar
  81. Pratt, L.A. and Kolter, R., 1998, Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Mol Microbiol. 30:285–293.PubMedCrossRefGoogle Scholar
  82. Riegman, N., Kusters, R., Van Veggel, H., Bergmans, H., Van Bergenen Henegouwen, P., Hacker, J., and Van Die, I., 1990, F1C fimbriae of a uropathogenic Escherichia coli strain: genetic and functional organization of the foc gene cluster and identification of minor subunits, J Bacteriol. 172:1114–1120.PubMedGoogle Scholar
  83. Roberts, J.A., Marklund, B.I., liver, D., Haslam, D., Kaack, M.B., Baskin, G., Louis, M., Mollby, R., Winberg, J., and Normark, S., 1994, The Gal(alpha 1–4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract, Proc Natl Acad Sci USA. 91:11889–11893.PubMedCrossRefGoogle Scholar
  84. Ronald, A., 2002, The etiology of urinary tract infection: traditional and emerging pathogens, Am J Med. 113:14S–19S.PubMedCrossRefGoogle Scholar
  85. Rosenstein, I.J., Mizuochi, T., Hounsell, E.F., Stoll, M.S., Childs, R.A., and Feizi, T, 1988, New type of adhesive specificity revealed by oligosaccharide probes in Escherichia coli from patients with urinary tract infections, Lancet. 2:1327–1330.PubMedCrossRefGoogle Scholar
  86. Sauer, F.G., Barnhart, M., Choudhury, D., Knight, S.D., Waksman, G., and Hultgren, S.J., 2000a, Chaperoneassisted pilus assembly and bacterial attachment, Curr Opin Struct Biol. 10:548–556.PubMedCrossRefGoogle Scholar
  87. Sauer, F.G., Futterer, K., Pinkner, J.S., Dodson, K.W., Hultgren, S.J., and Waksman, G., 1999, Structural basis of chaperone function and pilus biogenesis. Science. 285:1058–1061.PubMedCrossRefGoogle Scholar
  88. Sauer, F.G., Knight, S.D., Waksman, Gj and Hultgren, S.J., 2000b, PapD-like chaperones and pilus biogenesis, Semin Cell Dev Biol. 11:27–34.PubMedCrossRefGoogle Scholar
  89. Sauer, F.G., Pinkner, J.S., Waksman, G., and Hultgren, S.J., 2002, Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation, Cell. 111:543–551.PubMedCrossRefGoogle Scholar
  90. Saulino, E.T., Bullitt, E., and Hultgren, S.J., 2000, Snapshots of usher-mediated protein secretion and ordered pilus assembly, Proc Natl Acad Sci USA. 97:9240–9245.PubMedCrossRefGoogle Scholar
  91. Saulino, E.T., Thanassi, D.G., Pinkner, J.S., and Hultgren, S.J., 1998, Ramifications of kinetic partitioning on usher-mediated pilus biogenesis, EMBO J. 17:2177–2185.PubMedCrossRefGoogle Scholar
  92. Schembri, M.A. and Klemm, P., 2001, Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence, Infect Immun. 69:1322–1328.PubMedCrossRefGoogle Scholar
  93. Schembri, M.A., Sokurenko, E.V., and Klemm, P., 2000, Functional flexibility of the FimH adhesin: insights from a random mutant library, Infect Immun. 68:2638–2646.PubMedCrossRefGoogle Scholar
  94. Schmoll, T., Hoschutzky, H., Morschhauser, J., Lottspeich, F., Jann, K., and Hacker, J., 1989, Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli, Mol Microbiol. 3:1735–1744.PubMedCrossRefGoogle Scholar
  95. Schmoll, T., Morschhauser, J., Ott, M., Ludwig, B., van Die, I., and Hacker, J., 1990, Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesion determinant: nucleotide sequence of the genes sfa B, C, D, E, F, Microb Pathog. 9:331–343.PubMedCrossRefGoogle Scholar
  96. Schwertmann, A., Schroten, H., Hacker, J., and Kunz, C., 1999, S-fimbriae from Escherichia coli bind to soluble glycoproteins from human milk, J Pediatr Gastroenterol Nutr. 28:257–263.PubMedCrossRefGoogle Scholar
  97. Sharon, N., 1987, Bacterial lectins, cell-cell recognition and infectious disease, FEBS Lett. 217:145–157.PubMedCrossRefGoogle Scholar
  98. Slonim, L.N., Pinkner, J.S., Branden, C.I., and Hultgren, S.J., 1992, Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly, EMBO J. 11:4747–4756.PubMedGoogle Scholar
  99. Sokurenko, E.V., Courtney, H.S., Abraham, S.N., Klemm, P., and Hasty, D.L., 1992, Functional heterogeneity of type 1 fimbriae of Escherichia coli, Infect Immun. 60:4709–4719.PubMedGoogle Scholar
  100. Sokurenko, E.V., Courtney, H.S., Maslow, J., Siitonen, A., and Hasty, D.L., 1995, Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes, J Bacteriol. 177:3680–3686.PubMedGoogle Scholar
  101. Sokurenko, E.V., Courtney, H.S., Ohman, D.E., Klemm, P., and Hasty, D.L., 1994, FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes, J Bacteriol. 176:748–755.PubMedGoogle Scholar
  102. Soto, G.E., Dodson, K.W., Ogg, D., Liu, C., Heuser, J., Knight, S., Kihlberg, J., Jones, C.H., and Hultgren, S.J., 1998, Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus, EMBO J. 17:6155–6167.PubMedCrossRefGoogle Scholar
  103. Stapleton, A.E., Stroud, M.R., Hakomori, S.I., and Stamm, W.E., 1998, The globoseries glycosphingolipid sialosyl galactosyl globoside is found in urinary tract tissues and is a preferred binding receptor in vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins, Infect Immun. 66:3856–3861.PubMedGoogle Scholar
  104. Striker, R., Nilsson, U., Stonecipher, A., Magnusson, G., and Hultgren, S.J., 1995, Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli, Mol Microbiol. 16:1021–1029.PubMedCrossRefGoogle Scholar
  105. Stromberg, N., Marklund, B.I., Lund, B., liver, D., Hamers, A., Gaastra, W., Karlsson, K.A., and Normark, S., 1990, Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Gal alpha 1–4Gal-containing isoreceptors, EMBO J. 9:2001–2010.PubMedGoogle Scholar
  106. Stromberg, N., Nyholm, P.G., Pascher, I., and Normark, S., 1991, Saccharide orientation at the cell surface affects glycolipid receptor function, Proc Natl Acad Sci USA. 88:9340–9344.PubMedCrossRefGoogle Scholar
  107. Sung, M.A., Fleming, K., Chen, H.A., and Matthews, S., 2001, The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors, EMBO Rep. 2:621–627.PubMedCrossRefGoogle Scholar
  108. Svensson, A., Larsson, A., Emtenas, H., Hedenstrom, M., Fex, T., Hultgren, S.J., Pinkner, J.S., Almqvist, F., and Kihlberg, J., 2001a, Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli, Chem bio chem. 2:915–918PubMedGoogle Scholar
  109. Svensson, M., Frendeus, B., Butters, T., Platt, F., Dwek, R., and Svanborg, C., 2003, Glycolipid depletion in antimicrobial therapy, Mol Microbiol. 47:453–461.PubMedCrossRefGoogle Scholar
  110. Svensson, M., Platt, F., Frendeus, B., Butters, T., Dwek, R., and Svanborg, C., 2001b, Carbohydrate receptor depletion as an antimicrobial strategy for prevention of urinary tract infection, J Infect Dis. 183Suppl 1:S70–S73.PubMedCrossRefGoogle Scholar
  111. Swanson, T.N., Bilge, S.S., Nowicki, B., and Moseley, S.L., 1991, Molecular structure of the Dr adhesin: nucleotide sequence and mapping of receptor-binding domain by use of fusion constructs, Infect Immun. 59:261–268.PubMedGoogle Scholar
  112. Thanassi, D.G. and Hultgren, S.J., 2000, Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system, Methods. 20:111–126.PubMedCrossRefGoogle Scholar
  113. Thanassi, D.G., Saulino, E.T., and Hultgren, S.J., 1998a, The chaperone/usher pathway: a major terminal branch of the general secretory pathway, Curr Opin Microbiol. 1:223–231.PubMedCrossRefGoogle Scholar
  114. Thanassi, D.G., Saulino, E.T., Lombardo, M.J., Roth, R., Heuser, J., and Hultgren, S.J., 1998b, The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane, Proc Natl Acad Sci USA. 95:3146–3151.PubMedCrossRefGoogle Scholar
  115. Thanassi, D.G., Stathopoulos, C., Dodson, K., Geiger, D., and Hultgren, S.J., 2002, Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis, J Bacteriol. 184:6260–6269.PubMedCrossRefGoogle Scholar
  116. Thankavel, K., Madison, B., Ikeda, T., Malaviya, R., Shah, A.H., Arumugam, P.M., and Abraham, S.N., 1997, Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection, J Clin Invest. 100:1123–1136.PubMedCrossRefGoogle Scholar
  117. Thomas, W.E., Trintchina, E., Forero, M., Vogel, V., and Sokurenko, E.V., 2002, Bacterial adhesion to target cells enhanced by shear force, Cell. 109:913–923.PubMedCrossRefGoogle Scholar
  118. Van Loy, C.P., Sokurenko, E.V., Samudrala, R., and Moseley, S.L., 2002, Identification of amino acids in the Dr adhesin required for binding to decay-accelerating factor, Mol Microbiol. 45:439–452.PubMedCrossRefGoogle Scholar
  119. Wang, M.C., Tseng, C.C., Chen, C.Y., Wu, J.J., and Huang, J.J., 2002, The role of bacterial virulence and host factors in patients with Escherichia coli bacteremia who have acute cholangitis or upper urinary tract infection, Clin Infect Dis. 35:1161–1166.PubMedCrossRefGoogle Scholar
  120. Westerlund, B., Kuusela, P., Risteli, J., Risteli, L., Vartio, T., Rauvala, H., Virkola, R., and Korhonen, T.K., 1989, The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein, Mol Microbiol. 3:329–337.PubMedCrossRefGoogle Scholar
  121. Wizemann, T.M., Adamou, J.E., and Langermann, S., 1999, Adhesins as targets for vaccine development, Emerg Infect Dis. 5:395–403.PubMedCrossRefGoogle Scholar
  122. Wu, X.-R. and Sun, T.-T., 1993, Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein, J Cell Sci. 106:31–43.PubMedGoogle Scholar
  123. Zavialov, A.V., Kersley, J., Korpela, T., Zav’yalov, V.P., MacIntyre, S., and Knight, S.D., 2002, Donor strand complementation mechanism in the biogenesis of non-pilus systems, Mol Microbiol. 45:983–995.PubMedCrossRefGoogle Scholar
  124. Zavialov, A. V., Berglund, J., Pudney, A. F., Fooks, L. J., Ibrahim, T. M., MacIntyre, S., and Knight, S. D., 2003, Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation, Cell 113:587–596.PubMedCrossRefGoogle Scholar
  125. Zhou, G., Mo, W.J., Sebbel, P., Min, G., Neubert, T.A., Glockshuber, R., Wu, X.R., Sun, T.T., and Kong, X.P., 2001, Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding, J Cell Sci. 114:4095–4103.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jenny Berglund
    • 1
  • Stefan D. Knight
    • 1
  1. 1.Department of Molecular Biosciences/Structural BiologyUppsala Biomedical Center Swedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations