Skip to main content

Polymer Based Scaffolds and Carriers for Bioactive Agents from Different Natural Origin Materials

  • Chapter
Tissue Engineering, Stem Cells, and Gene Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 534))

Abstract

The aim of the present chapter is to describe the work developed and ongoing in the 3B’s Research Group of the University of Minho regarding tissue engineering applications and our approaches to reach this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burg, K.J.L., Porter, S., and Kellam, J.F., 2000, Biomaterial developments for bone tissue engineering.Biomaterials 2212347–2359.

    Article  Google Scholar 

  2. Langer,R. and Vacanti,J.P. 1993 Tissue engineering.Science 260920–926.

    Article  Google Scholar 

  3. Langer, R., 1999, Selected advances in drug delivery and tissue engineering.J. Control. Rel. 627–11.

    Article  Google Scholar 

  4. Hardin-Young, J., Teumer, J., Ross, R.N., and Parenteau, N.L., 2000, Approaches to transplanting engineered cells and tissues. In: Lanza R, Langer R, Vacanti J, editors, Principles of Tissue Engineering (2ndEd), Academic Press, New York, pp. 281–291.

    Chapter  Google Scholar 

  5. Pachence, J.M., and Kohn, J., 1997, Biodegradable polymers for tissue engineering. In: Lanza R, Langer R, Chick W, editors, Principles of Tissue Engineering: Academic Press, New York, pp. 273–293.

    Google Scholar 

  6. Vacanti, C.A., Bonassar, L.J., and Vacanti, J.P., 2000, Structural Tissue Engineering. In: Lanza R, Langer R, Vacanti J, editors, Principles of Tissue Engineering (2“d Ed): Academic Press, New York, pp. 671–68.

    Chapter  Google Scholar 

  7. Agrawal, C.M., Athanasiou, K.A., and Heckman, J.D., 1997, Biodegradable PLA-PGA polymers for tissue engineering in orthopaedics.Mater. Sci. Forum 250115–228.

    Article  Google Scholar 

  8. Thomson, R., Yaszemski, M., and Mikos, A., 1997, Polymer scaffold processing. In: Lanza R, Langer R, Chick W, editors, Principles of Tissue Engineering: Academic Press, New York, pp. 263–272.

    Google Scholar 

  9. Lu, L., and Mikos, A., 1996, The importance of new processing techniques in tissue engineering.MRS Bulletin 2128–32.

    Google Scholar 

  10. Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R.B., 1994, Preparation and characterization of poly(1-lactid acid) foams.Polymer 1068–1077.

    Google Scholar 

  11. Langer, R.,1999, Selected advances in drug delivery and tissue engineering.J. Contr. Rel.62, 7–11.

    Article  Google Scholar 

  12. Mikos, A.G., Sarakinos, G., Leite, S.M., Vacanti, J.P., and Langer, R., 1993, Laminated three-dimensional biodegradable foams for use in tissue engineering.Biomaterials 14323–330.

    Article  Google Scholar 

  13. Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacanti, J.P., and Langer, R.B., 1993, Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation.J. Biomed. Mater. Res.27, 183–189.

    Article  Google Scholar 

  14. Hinrichs, W., 1992, Porous polymer structures for tissue regeneration. PhD Thesis. Univ. Twente, The Netherlands.

    Google Scholar 

  15. Mooney, D.J., Baldwin, D.F., Suh, N.P., and Vacanti, J.P., 1996, Novel approach to fabricate porous sponges of poly(d,l-lactid-co-glycolic acid) without the use of organic solvents.Biomaterials17, 1417–1422.

    Article  Google Scholar 

  16. Gomes, M.E., Ribeiro, A.S., Malafaya, P.B., Reis, R.L., and Cunha, A.M., 2001, A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour.Biomaterials22, 883–889.

    Article  Google Scholar 

  17. Thompson, R.C., Yaszemski, M.J., Powders, J.M., 1995, Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.J. Biomat. Sci.-Polym. Edn. 723–28.

    Article  Google Scholar 

  18. Malafaya, P.B., Elvira, C., Gallardo, A., San Roman, J., and Reis, R.L., 2001, Porous starch-based drug delivery systems processed by a microwave route.J. Biomat. Sci: Polym. Edn. 121227–1241.

    Article  Google Scholar 

  19. Hutmacher, D.W., 2000, Scaffolds in tissue engineering bone and cartilage.Biomaterials 212529–2543.

    Article  Google Scholar 

  20. Hutmacher, D.W., Teoh, S.H., Zein, I., Renawake, M., and Lau, S., 2000, Tissue engineering Research: the engineer’s role.Med. Dev. Tech.1, 33–39.

    Google Scholar 

  21. Langer, R., and Vacanti, J., 1999, Tissue engineering: the challenges ahead.Sci. Amer. 28062–65.

    Article  Google Scholar 

  22. Guidoin, M., Marois, Y., Bejui, J., Poddevin, N., King, M., and Guidoin, R., 2000, Analysis of retrived polymer fiber based replacements for the ACL.Biomaterials2461–2474.

    Google Scholar 

  23. Thomson, R.C., Wake, M.C., Yaszemski, M., and Mikos, A.G., 1995, Biodegradable polymer scaffolds to regenerate organs.Adv. Polym. Sci. 122247–274.

    Google Scholar 

  24. Maquet, V., and Jerome, R., 1997, Design of macroporous biodegradable polymer scaffolds for cell transplantation.Mater. Sci. Forum 25015–42.

    Article  Google Scholar 

  25. Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P., Langer, R., and Freed, L.E. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering.Biotech. Progr. 14193–202.

    Google Scholar 

  26. Freed, L.E., Hollander, A., Martin, I., Barry, J., Langer, R., and Vunjak-Novakovic, G.,1998, Chondrogenesis in a cell-polymer-bioreactor system.Exp. Cel. Res. 24058–65

    Article  Google Scholar 

  27. Holder, W., Gruber, H., Moore, A., Culberson, C., Anderson, W., Burg, K., and Mooney, D., 1998, Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat. J.Biomed. Mater. Res. 41412–421

    Article  Google Scholar 

  28. Gao, J., Niklason L., and Langer, R., 1998, Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells.J. Biomed. Mater. Res. 42417–424

    Article  Google Scholar 

  29. Aigner, J., Tegeler, J., Hutzler, P., Campoccia, D., Pavesio, A., Hammer, C., Kastenbauer, E., and Naumann, A., 1998, Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester.J. Biomed. Mater. Res. 42172–181.

    Article  Google Scholar 

  30. Rotter, N., Aigner, J., Naumann, A., Planck, H., Hammer, C., Burmester, G., and Sittinger, M., 1998, Cartilage reconstruction of resorbable polymer scaffolds for tissue engineering of human septal cartilage.J. Biomed. Mater. Res.42 347–356.

    Article  Google Scholar 

  31. Sittinger, M., Reitzel, D., Dauner, M., Hierlemann, H., Hammer, C., Kastenbauer, E., Plank, H., Burmester, G., Bujia, J., 1996, Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J.Biomed. Mater. Res. 3357–63.

    Article  Google Scholar 

  32. Mendes, S.C., Bezemer, J., Classe, M.B., Grypma, D.W., Bellia, G., Innocenti, F.D., Reis, R.L., van Blitterswijk, C,A, and de Bruijn, J.D., 2002, Evaluation of two biodegradable polymeric systems as substrates for bone tissue engineering.Tissue Eng.(in press).

    Google Scholar 

  33. Nam, Y.S., Yoon, J.J., and Park, T.G., 2000, A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.J. Biomed. Mater. Res.: Appl. Biomater.53, 1–7

    Article  Google Scholar 

  34. Gomes, M.E., Godinho, J.S., Tchalamov, D., Cunha, A.M., and Reis, R.L., 2002, Design and processing of starch based scaffolds for hard tissue engineering.J. Appl. Med. Polym.(in press).

    Google Scholar 

  35. Gomes, M.E., Godinho, J.S., Tchalamov, D., Cunha, A.M., and Reis, R.L., 2002, Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties.Mat. Sci. Eng. C20 19–26.

    Article  Google Scholar 

  36. Zhang, R., and Ma, P.X., 1999, Po1y(A-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering.i.preparation and morphology.J. Biomed. Mater. Res. 44446–455.

    Article  Google Scholar 

  37. Temenhoff, J.S., and Mikos, A.G., 2000, Injectable materials for orthopaedic tissue engineering.Biomaterials 212405–2412.

    Article  Google Scholar 

  38. Espigare, S.I., Elvira, C., Mano, J.F., San Román, J., and Reis, R.L., 2002, New biodegradable and bioactive acrylic bone cements based on starch blends and ceramic fillers.Biomaterials 231883–1895.

    Article  Google Scholar 

  39. Elvira, C., Mano, J.F., San Roman, J., and Reis, R.L., 2002, Starch based biodegradable hydrogels with potential biomedical applications as drug delivery systemsBiomaterials 231955–1966.

    Article  Google Scholar 

  40. Tabata, Y., 2000, The importance of drug delivery systems in tissue engineering.PSTT 380–89.

    Google Scholar 

  41. Bessho, K., 1996, Ectopic osteoinductive difference between purified bovine and recombinant human bone morphogenetic protein. In: Lindholm TS, editor, Bone morphogenetic proteins: biology, biochemistry and reconstructive surgery, RG Landes Co, Georgetown, pp.105–111.

    Google Scholar 

  42. Hotz, G., 1998, Delivery systems for osteoinductive proteins. In: Stark GB, Horch R, Tanczos E, editors, Biological matrices and tissue reconstruction, Springer, Berlin, pp.207–213.

    Chapter  Google Scholar 

  43. Goodman, G.R., Dissanayake, I.R., Bowman, A.R., Pun, S., Ma, Y., Jee, W.S.S., Bryer, H.P., and Epstein, S., 2001, Transforming growth factor-E administration modifies cyclosporine A-induced bone loss.Bone 28583–588.

    Article  Google Scholar 

  44. Maeda, M., Kadota, K., Kajihara, M., Sano, A., and Fujioka, K., 2001, Sustained release of human growth hormone (hGH) from collagen film and evaluation on wound healing in db/db mice.J. Control. Rel. 77261–272.

    Article  Google Scholar 

  45. Li, R.H., and Wozney, J.M., 2001, Delivering on the promise of bone morphogenetic proteins.Trends Biotech. 19255–265.

    Article  Google Scholar 

  46. Baldwin, S.P., and Saltzman, W.M., 1998, Materials for protein delivery in tissue engineering.Adv. Drug Deliv. Rev. 3371–86.

    Article  Google Scholar 

  47. Anseth, K.S., Metters, A.T., Bryant, S.J., Martens, P.J., Elisseeff, J.H., and Bowman, C.N., 2002In situforming degradable networks and their application in tissue engineering and drug delivery. J. Control. Rel. 78199–209.

    Article  Google Scholar 

  48. Li, R.H., and Wozney, J.M., 2001, Delivering on the promise of bone morphogenetic proteins.Trends Biotech. 19255–265.

    Article  Google Scholar 

  49. Dieplod, R., Kreuter, J., Guggenbuhl, P., and Robinson, P., 1989, Distribution of poly-hexyl-2-cyano-[3-14C] acrylate nanoparticles in healthy and chronically inflamed rabbit eyes.Int. J. Pharm. 54149–153.

    Article  Google Scholar 

  50. Ilium,L.,Wright,J.and Davis,S.S.,1989,Targeting of microspheres to sites of inflammation.Int.J.Pharm.52,221–224.

    Article  Google Scholar 

  51. Alpar, H.O., Field, W.N., Hyde, R., and Lewis, D.A., 1989, The transport of microspheres to from the gastro-intestinal tract to inflammatory air pouches in the rat.J. Pharm. Pharmacol.41, 194–196.

    Article  Google Scholar 

  52. Paetau, I., Chen, C.Z., and Jane, J.L., 1994, Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical properties and water absorption.Ind. Eng. Chem. Res.33, 1821–1827.

    Article  Google Scholar 

  53. Vaz, C.M., Mano, J.F., Fossen, M., Van Tuil, R.F., de Graaf, L.A., Reis, R.L., and Cunha, A.M., 2000, Mechanical, dynamic-mechanical and thermal properties of soy-protein thermoplastics with potential biomedical applications.J. Macromol. Sei. B41, 33–46.

    Article  Google Scholar 

  54. Risbud, M.V., Hardikar, A.A., Bhat, S.V., and Bhonde, R.R., 2000, pH-sensitive freeze-dried chitosan-polyvinyl pirrolidone hydrogels as controlled release systems for antibiotic delivery.J Control. Rel.68, 23–30.

    Article  Google Scholar 

  55. Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M.D., Hoemann, C.D., Leroux, J.C., Atkinson, B.L., Binette, F., and Selmani, A., 2000, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials21, 2155–2161.

    Article  Google Scholar 

  56. Kim, M.R., and Park, T.G., 2002, Temperature-responsive and degradable Hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone.J. Control. Rel.80, 69–77.

    Article  Google Scholar 

  57. Melekaslan, D., and Okay, 0., 2000, Swelling of strong polyelectrolyte hydrogels in polymer solutions: effect of ion pair formation on the polymer collapse.Polymer41, 5737–5747.

    Article  Google Scholar 

  58. Ilaysky, M., Mamytbekov, G., Hanykov, L., and Dusek, K., 2002, Phase transition in swollen gels 31. swelling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures.Eur. Pol. J.38, 875–883.

    Article  Google Scholar 

  59. Park, S.B., You, J.O., Park, H.Y., Haam, S.J., and Kim, W.S., 2001, A novel pH-sensitive membrane from chitosan-TEOS IPN; preparation and its drug permeation characteristics.Biomaterials 22323–330.

    Article  Google Scholar 

  60. Alvarez-Lorenzo, C., and Concheiro, A., 2002, Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel.Control. Rel. 80247–257.

    Article  Google Scholar 

  61. Pereira, C.S., Cunha, A.M., Reis, R.L., Vazquez, B., and San Roman, J., 1998, New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J.Mater. Sci.: Mater. Med.9, 825–833.

    Article  Google Scholar 

  62. Naik, A., Kalia, Y.N., and Guy, R.H., 2000, Transdermal drug delivery: overcoming the skin’s barrier function.Pharm. Sci. Tech. Today3, 318–326.

    Article  Google Scholar 

  63. Hafemann, B., Ensslen, S., Erdmann, C., Niedballa, R., Zuhlke, A., Ghofrani, K., and Kirkpatrick, C.J., 1999, Use of a collagenlelastin-membrane for the tissue engineering of dermis.Burns25, 373–384.

    Article  Google Scholar 

  64. Balasubramani, M., Kumar, T.R., and Babu, M., 2001, Skin substitutes: a review.Burns 27534–544.

    Article  Google Scholar 

  65. Sai, K., and Babu, M., 2000, Collagen based dressings - a review.Burns 2654–62.

    Article  Google Scholar 

  66. Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M., and Kurita, A., 2002, Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process.Biomaterials23, 833–840.

    Article  Google Scholar 

  67. Howling, G.I., Dettmar, P.W., Goddard, P.A., Hampson, F.C., Dornish, M., and Wood, E.J., 2001, The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro.Biomaterials22222959–2966.

    Article  Google Scholar 

  68. Ueyama, Y., Ishikawa, K., Mano, T., Koyama, T., Nagatsuka, H., Suzuki, K., and Ryoke, K., 2002, Usefulness as guided bone regeneration membrane of the alginate membrane.Biomaterials 232027–2033.

    Article  Google Scholar 

  69. Vaz, C.M., deGraft, L.A., Reis, R.L., and Cunha, A.M., 2002, pH-sensitive soy protein hydrogels for the controlled release of an anti-inflammatory drug.J. Mater. Sci.: Mater. Med.(in press).

    Google Scholar 

  70. Nordtveit, R.J., Varum, K.M., and Smidsrod, O., 1996, Degradation of partially Nacetylated chitosans with hen egg white and human lysozyme.Carbohydrate Polym.29, 163–167.

    Article  Google Scholar 

  71. Fenton, J.I., Chlebek-Brown, K.A., Peters, T.L., Caron, J.P., and Orth, M.W., 2000, The effects of glucosamine derivatives on equine articular cartilage degradation in explant culture.Osteoarthritis Cartilage8, 444–451.

    Article  Google Scholar 

  72. Heath, C.A., 2000, Cells for tissue engineering.TIBTECH18, 17–19.

    Article  Google Scholar 

  73. Blau, H.M., Brazelton, T.R., and Weimann, J.M., 2001, The evolving concept of a stem cell: entity or function.Cell105, 829–841.

    Article  Google Scholar 

  74. Friedenstain, A.J., 1973, Determined and inducible osteogenic precursor cells. In: Hard Tissue Growth, Repair and Remineralization, Elsevier, Amsterdam, pp.169–185.

    Google Scholar 

  75. Caplan, A.I., and Bruder, S.P., 2001, Mesenchymal stem cells: Building blocks for molecular medicine in the 21stcentury.Trends in Mol. Med.7, 259–264.

    Article  Google Scholar 

  76. Haynesworth, S.E., Goshima, J., Goldberg, V.M., and Caplan, A.I., 1992, Characterization of cells with osteogenic potential from human marrow.Bone13, 81–88.

    Article  Google Scholar 

  77. Jaiswall, N., Haynesworth, S.E., Caplan, A.I., and Bruder, S.P., 1997, Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cell invitro. J. Cell Biochem. 64295–312.

    Article  Google Scholar 

  78. Pittinger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosxca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., 1999, Multilineage potential of adult mesenchymal stem cells.Science 284143–147.

    Article  Google Scholar 

  79. Bruder, S.P., Jaiwal, N., and Haynesworth, S.E., 1997, Growth kinetics, self renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J. Cell Biochem. 64278–294.

    Article  Google Scholar 

  80. Jaiswal, R.K., Jaiswal, N., Bruder, S.P., Mbalaviele, G., Marshak, D.R., and Pittenger, M.F., 2000, Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase.J. Biol. Chem. 2759645–9652.

    Article  Google Scholar 

  81. Salgado, A.J., Gomes, M.E., Chou, A., Coutinho, O.P., Reis, R.L., and Hutmacher, D.W., 2002, Preliminary study on the adhesion and proliferation of human osteoblasts on starch based scaffolds.Mater. Sci. Eng. C: Biomimetic and Supramolecular Systems 2027–33.

    Article  Google Scholar 

  82. Gomes, M.E., Sikavitsas, V.I., Behravesh, E., Reis, R.L., and Mikos, A.G., 2002, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch based three-dimensional scaffolds.J. Biomed. Mater. Res.(submitted).

    Google Scholar 

  83. Steele, J.G., Dalton, B.A., Thomas, C.H., Healy, K.E., Gengenbach, T.R., and McFarland, C.D., 1999, Underpaying mechanisms of cellular adhesion in vitro during colonization of synthetic surfaces by bone-derived cells. In: Davies JE, editor, Bone engineering, em square, Toronto, pp.225–231.

    Google Scholar 

  84. Horbett, T.A., Cooper, K.W., Lew, K.R., and Ratner, B.D., 1998, Rapid postadsorpative changes in fibrinogen adsorbed from plasma to segmented polyurethanes.J. Biomater. Sci.: Polym. Ed. 91071–1087.

    Article  Google Scholar 

  85. Sodek, J., Ganss, B., McKee, M.D., 2000, Osteopontin.Crit. Rev. Oral Biol. Med. 11279–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malafaya, P.B., Gomes, M.E., Salgado, A.J., Reis, R.L. (2003). Polymer Based Scaffolds and Carriers for Bioactive Agents from Different Natural Origin Materials. In: Elçin, Y.M. (eds) Tissue Engineering, Stem Cells, and Gene Therapies. Advances in Experimental Medicine and Biology, vol 534. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0063-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0063-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4907-5

  • Online ISBN: 978-1-4615-0063-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics