Pharmaceutical Applications of In Vivo EPR

  • Karsten Mäder
  • Bernard Gallez
Part of the Biological Magnetic Resonance book series (BIMR, volume 18)


This chapter illustrates the potential of In vivo EPR in several areas of pharmaceutical sciences: pharmaceutical technology, pharmacodynamics, toxicology, and pharmacokinetics. This method offers unique opportunities to characterise delivery processes. It provides information about the microenvironment inside the drug carriers (microviscosity, micropolarity, microacidity) and permits the quantitative characterisation of release mechanisms. Localised information can be obtained by means of different nitroxide isotopes or by EPR imaging. Gamma sterilisation derived radicals may serve as endogenous signals to monitor water penetration in clinically used drug carriers. EPR is capable to characterise metabolic processes and to follow the pharmacokinetics of nitroxides and metal ions noninvasively in vivo. Pharmacodynamic applications are related to the measurements of the oxygen level, the microacidity and the level of nitric oxide.


Nitric Oxide Electron Paramagnetic Resonance Drug Release Drug Carrier Isosorbide Dinitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlin, P., Kristl, J. and Sentjurc, M. (1999) EPR study of loading capacity and location of spin labeled Iipophilic substances in different SLN. Proceed. Int’l. Symp. Control. Rel. Bioact. Mater. 25,334–335.Google Scholar
  2. Afzal, V., Brasch, R.C., Nitecki, D.E. and Wolff, S. (1982) Nitroxyl spin label contrast enhancers for magnetic resonance imaging. Studies of acute toxicity and mutagenesis. Invest. Radiol. 19,549–552.Google Scholar
  3. Alecci, M., Ferrari, M., Quaresima, V., Sotgiu, A. and Ursini, C.L. (1994) Simultaneous 280 MHz EPR imaging of rat organs during nitroxide free radical clearance. Biophys. J. 67, 1274–1279.PubMedCentralPubMedGoogle Scholar
  4. Alecci, M., Mader, K., Placidi, G., Colacicchi, S., Ursini, C.L. and Sotgiu, A. (1998) A low frequency EPR model study with pH-sensitive paramagnetic probes for in vivo imaging. Phys. Med. Biol. 43, 42–48.Google Scholar
  5. Anderson, D.E., Yuan, X.J., Tseng, C.M., Rubin, L.J., Rosen, G.M. and Tod, M.L. (1993) Nitrone spin-traps block calcium channels and induce pulmonary artery relaxation independent of free radicals. Biochem. Biophys. Res. Comm. 193, 878–885.PubMedGoogle Scholar
  6. Bacic, G., Niesman, M.R., Magin, R.L. and Swartz, H.M. (1990) NMR and ESR study of liposome delivery of Mn2+ to murine liver. Magn. Reson. Med. 13,44–61.PubMedGoogle Scholar
  7. Bacic, G., Liu, K.J., O’Hara, J.A., Harris, R.D., Szybinski, K., Goda, F. and Swartz, H.M. (1993) Oxygen tension in a murine tumor: a combined EPR and MRI study. Magn. Reson. Med. 30,568–572.PubMedGoogle Scholar
  8. Bacic, G., Nilges, M., Walczak, T. and Swartz, H.M. (1989) The use of in vivo EPR to follow the pharmacokinetics of drugs. Phys. Med. 2–4,307–313.Google Scholar
  9. Bennett, H.F., Brown, R.D., Keana, J.F.W., Koenig, S.H. and Swartz, H.M. (1990) Interactions of nitroxides with plasma and blood: effect on 1/T1 of water protons. Magn. Reson. Med. 14, 40–55.PubMedGoogle Scholar
  10. Berliner, L.J. (1976) Spin Labeling. Theory and applications. Academic Press, New York.Google Scholar
  11. Berliner, L.J. and Wan, X. (1989) In vivo pharmacokinetics by electron magnetic resonance spectroscopy. Magn. Reson. Med. 9, 430–434.PubMedGoogle Scholar
  12. Bittner, B., Mader, K., Kroll, C., Borchert, H.H. and Kissel, T. (1999) Tetracycline-HC1 loaded poly(DL-lactid-coglycolide) microspheres prepared by a spray drying technique: Influence of y-irradiation on radical formation and polymer degradation. J. Contr. Rel. 59, 23–32.Google Scholar
  13. Brasch, R.C.(1983a) Work in progress: methods of contrast enhancement for NMR imaging and potential applications. Radiology 147, 781–788.PubMedGoogle Scholar
  14. Brasch, R.C., London, D.A., Wesbey, G.E., Tozer, T.N., Nitecki, D.E., Williams, R.D., Doemeny, J., Tuck, L.D. and Lalemand, D.P. (1983b) Work in progress: nuclear magnetic resonance study of a paramagnetic nitroxide contrast agent enhancement of renal structures in experimental animals. Radiology 147, 773–779.PubMedGoogle Scholar
  15. Brunner, A., Mader, K. and Göpferich A. (1999) The microenvironment inside biodegradable microspheres: changes in pH and osmotic pressure. Pharm. Res. 16, 852–858.Google Scholar
  16. Chen, K. Swartz, H.M. (1988) Oxidation of hydroxylamines to nitroxide spin labels in living cells, Biochim. Biophys. Acta, 970:270–277 (1988).PubMedGoogle Scholar
  17. Chen, K., Glockner, J.F., Morse, P.D. and Swartz, H.M. (1989) Effects of oxygen on the metabolism of nitroxide spin labels in cells. Biochemistry 28,2496–2501.PubMedGoogle Scholar
  18. Colacicchi, S., Ferrari, M., Sotgiu, A. (1992) In vivo electron paramagnetic resonance spectroscopy/imaging: first experiences, problems, and perspectives. Int. J. Biochem. 24, 205–214.PubMedGoogle Scholar
  19. Ehman, R.L., Wesbey, G.E., Moon, K.L., Williams, R.D., McNamara, M.T., Couet, W.R., Tozer, T.N. and Brasch, R.C. (1985) Enhanced MRI of tumors utilizing a new nitroxyl spin label contrast agent. Magn. Reson. Imaging 3, 89–97.PubMedGoogle Scholar
  20. Ferrari, M., Colacicchi, S., Gualtieri, G., Santini, M.T. and Sotgiu, A. (1990) Whole mouse nitroxide free radical pharmacokinetics by low frequency electron paramagnetic resonance. Biochem. Biophys. Res. Commun. 166, 168–173.PubMedGoogle Scholar
  21. Friedman, B.J., Grinberg, O.Y., Isaacs, K.A., Ruuge, E.K. and Swartz, H.M. (1996) Effect of repetitive ischemia on myocardial oxygen tension in isolated perfused and hypoperfused rat hearts. Magn. Reson. Med. 35,214–220PubMedGoogle Scholar
  22. Fujii, S., Suzuki, Y., Yoshimura, T., and Kamada H. (1998a) In vivo three-dimensional EPR imaging of nitric oxide production from isosorbide dinitrate in mice. Am. J. Physiol. 37, G857–G862.Google Scholar
  23. Fujii, H. and Berliner, L.J. (1998b) Nitric oxide: prospects and perspectives of in vivo detection by L-band EPR spectroscopy. Phys. Med. Biol. 43, 1949–1956.PubMedGoogle Scholar
  24. Fujii, H., Koscielniak, J. and Berliner, L.J. (1997) Determination and characterisation of nitric oxide generation in mice by in vivo L-band EPR spectroscopy. Magn. Reson. Med. 38,565–568.PubMedGoogle Scholar
  25. Fujii, H, Zhao B, Koscielniak J and Berliner L. J. (1994) In vivo EPR studies of the metabolic fate of nitrosobenzene. Magn. Res. Med. 31, 77–80.Google Scholar
  26. Fung, L.K., Ewend, M.G., Sills, A., Sipos E.P., Thompson, R., Watts, M., Colvin, O.M., Brem, H. and Saltzman, W.M. (1998) Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 58, 672–684.PubMedGoogle Scholar
  27. Gallez, B., Jordan, B.F., Baudelet, C. and Misson, P.D. (1999a) Pharmacological modifications of the partial pressure of oxygen in murine tumors: evaluation using in vivo EPR oximetry. Magn. Reson. Med. 42, 627–630.PubMedGoogle Scholar
  28. Gallez, B., Jordan, B. and Baudelet, C. (1999b) Microencapsulation of paramagnetic particles by pyrroxylin in order to preserve their responsiveness to oxygen when used as sensors for in vivo EPR oximetry. Magn. Reson. Med. 42, 193–196.PubMedGoogle Scholar
  29. Gallez, B., Baudelet, C. and Geurts, M. (1998a) Regional distribution of manganese found in the brain after injection of a single-dose of manganese-based contrast agents. Magn. Reson. Imag. 16,1211–1215.Google Scholar
  30. Gallez, B., Debuyst, R., Liu, K.J., Goda, F., Walczak, T., Demeure, R., Taper, H. and Swartz, H.M. (1998b) Small particles of fusinite and carbohydrate chars coated with aqueous soluble polymers: preparation and applications for in vivo EPR oximetry. Magn. Reson. Med. 40,152–159.PubMedGoogle Scholar
  31. Gallez, B., Baudelet, C., Adline, J., Geurts, M. and Delzenne, N. (1997) Accumulation of manganese in the brain of mice after intravenous injection of manganese-based contrast agents. Chem. Res. Toxicol. 10,360–363.PubMedGoogle Scholar
  32. Gallez, B., Bacic, G., Goda, F., Jiang, J.J., O’Hara, J.A., Dunn, J.F. and Swartz, H.M. (1996a) Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues. In-vivo EPR and MRI studies, Magn. Reson. Med. 35, 97–106.PubMedGoogle Scholar
  33. Gallez, B., Bacic, G. and Swartz, H.M. (1996b) Evidence for the dissociation of the hepatobiliary MRI contrast agent Mn-DPDP. Magn. Reson. Med 35,14–19.PubMedGoogle Scholar
  34. Gallez, B., Baudelet, C., Adline, J., Charbon, V., Lambert, D.M. (1996c) The uptake of MnDPDP by hepatocytes is not mediated by the facilitated transport of pyridoxine. Magn. Reson. Imag. 14,1191–1195. Google Scholar
  35. Gallez, B., Mader, K. and Swartz, H.M. (1996d) Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in-vivo EPR study. Magn. Reson. Med. 36, 694–697.PubMedGoogle Scholar
  36. Gallez, B., Debuyst, R., Liu, K.J., Demeure, R. and Swartz, H.M. (1996e) Development of biocompatible implants of fusinite for in vivo EPR oximetry, MAGMA 4, 71–75.PubMedGoogle Scholar
  37. Gallez, B., Lacour, V., Demeure, R., Debuyst, R., Dejehet, F., De Keyser, J.L. and Dumont, P. (1994a) Spin labelled arabinogalactan as MRI contrast agent. Magn. Reson. Imag. 12, 61–69.Google Scholar
  38. Gallez, B., Debuyst, R., Dejehet, F., De Keyser, J.L., Lacour, V., Demeure, R. and Dumont, P. (1994b) Relaxivity and molecular dynamics of spin labelled polysaccharides. MAGMA 2, 61–68.Google Scholar
  39. Gallez, B., Debuyst, R., Demeure, R., Dejehet, F., Grandin, C., Van Beers, B., Taper, H., Pringot, J. and Dumont, P. (1993) Evaluation of a nitroxyl fatty acid as liver contrast agent for magnetic resonance imaging. Magn. Reson. Med. 30, 592–599.PubMedGoogle Scholar
  40. Gallez, B., De Meester, C., Debuyst, R., Dejehet, F. and Dumont, P. (1992) Mutagenicity of nitroxyl compounds: structure-activity relationships. Toxico!. Lett. 63, 35–45.Google Scholar
  41. Goda, F., O’Hara, J.A., Rhodes, E.S., Liu, K.J., Dunn, J.F., Bacic, G. and Swartz, H.M. (1995) Changes of oxygen tension in experimental tumors after a single-dose of X-Ray irradiation. Cancer Res. 55, 2249–2252.PubMedGoogle Scholar
  42. Goda, F., Gallez, B. and Swartz, H.M. (1996a) Pharmacokineteics of the nitroxide PCA measured by in vivo EPR. Res. Chem. Intermed. 22,491–498.Google Scholar
  43. Goda, F., Bacic, G., O’Hara, J.A., Gallez, B., Swartz, H.M. and Dunn, J.F. (1996b) The relationship between partial pressure of oxygen and perfusion in two murine tumors after X-ray irradiation: a combined gadopentetate dimeglumine dynamic magnetic resonance imaging an in vivo electron paramagnetic resonance oximetry study. Cancer Res. 56,3344–3349.PubMedGoogle Scholar
  44. Gordon, D.G., Brasch, R.C., Ogan, M.D. and Deen, D. (1988) Pyrroxamide, a non-ionic nitroxyl spin label contrast agent for magnetic resonance imaging. Mutagenesis and cell survival. Invest. Radio!. 23, 616–620.Google Scholar
  45. Griffeth, L.K., Rosen, G.M., Rauckman, E.J. and Drayer, B.P. (1984) Pharmacokinetics of nitroxide NMR contrast agent. Invest. Radio!. 19,553–562.Google Scholar
  46. Grucker, D. (1990) In vivo detection of injected free radical solutions. Magn. Reson. Med. 14, 140–147.PubMedGoogle Scholar
  47. Grucker, D., Guiberteau, T., Eclancher, B., Chambron, J., Chiarelli, R., Rassat, A., Subra, G. and Gallez, B. (1995) Dynamic nuclear polarization with nitroxides dissolved in biological fluids. J. Magn. Reson. B. 106, 101–109.PubMedGoogle Scholar
  48. Hahn, S.M., Tochner, Z., Krishna, C.M., Glass, J., Wilson, L., Samuni, A., Sprague, M., Venzon, D., Glatstein, E., Mitchell, J.B. and Russo, A. (1992) Tempo!, a stable free radical, is a novel murine radiation protector. Cancer Res. 52, 1750–1753.PubMedGoogle Scholar
  49. Halpern H.J., Peric, M., Yu, C., Barth, E.D., Chandramouli, G.V., Makinen, M.W. and Rosen G.M. (1996a) In vivo spin-label murine pharmacodynamics using low-frequency electron paramagnetic resonance imaging. Biophys. J 71, 403–409.PubMedCentralPubMedGoogle Scholar
  50. Halpern, H.J., Yu, C., Peric, M., Barth, E.D., Karczmar, G.S., River, J.N., Grdina, D.J. and Teicher, B.A. (1996b) Measurement of differences in pO2 in response to perfluorocarbon/carbogen in FSa and NFSa murine fibrosarcomas with low-frequency electron paramagnetic resonance oximetry. Radial. Res. 145, 610–618.Google Scholar
  51. Halpern, H.J., Yu, C., Barth, E., Peric, M. and Rosen, G.M. (1995) In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse. Proc. Natl. Acad. Sci. U.S.A. 92, 796–800.PubMedCentralPubMedGoogle Scholar
  52. Ishida, S.I., Kumashiro, H., Tsuchihashi, N., Ogata, T., Ono, M., Kamada, H. and Yoshida, E. (1989) In-vivo analysis of nitroxide radicals injected into small animals by L-Band ESR technique. Phys. Med. Biol. 34, 1317–1323.PubMedGoogle Scholar
  53. James, P.E., Bacic, G., Grinberg, O.Y., Goda, F., Dunn, J.F., Jackson, S.K. and Swartz, H.M. (1996) Endotoxin-induced changes in intrarenal PO2, measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging.Free Rad. Biol. Med. 21, 25–34. PubMedGoogle Scholar
  54. James, P.E., Grinberg, O.Y., Goda, F., Panz, T., O’Hara, J.A. and Swartz, H.M. (1997) Gloxy: an oxygen-sensitive coal for accurate measurement of low oxygen tensions in biological systems. Magn Reson Med 38, 48–58.PubMedGoogle Scholar
  55. Jiang J.J., Liu, K.J., Jordan, S.J., Swartz, H.M., Mason, R.P. (1996) Detection of free radical metabolite formation using in vivo EPR spectroscopy - evidence for rat hemoglobin thiyl radical formation following administration of phenylhydrazine. Arch. Biochem. Biophys. 1996, 266–270.Google Scholar
  56. Jordan, B., Baudelet, C. and Gallez, B. (1998) Carbon-centered radicals as oxygen sensors for in vivo electron paramagnetic resonance: screening for an optimal probe among commercially available charcoals. MAGMA 7, 121–129.PubMedGoogle Scholar
  57. Khramtsov, V.V. and Weiner, L.M.(1988) Proton exchange in stable nitroxyl radicals: pH sensitive spin probes, In: Volodarsky LB (ed.) Imidazoline nitroxides. Boca Raton: CRC press Vol. 2, 37–80.Google Scholar
  58. Komarov, A.M., Joseph, J. and Lai, C.S. (1994) In vivo pharmacokinetics of nitroxides in mice. Biochem. Biophys. Res. Commun. 201, 1035–1042.PubMedGoogle Scholar
  59. Kroll, C., Herrmann, W., Stösser, R., Borchert, H.H., and K. Mäder (1999) Direct, noninvasive and localized measurement of skin pH by electron spin resonance imaging (ESR). Proc. 26. Int. Symp. Control. Rel. Bioact. Mater. Google Scholar
  60. Liebmann, J., Bourg, J., Krishna, C.M., Glass, J., Cook, J.A. and Mitchell, J.B. (1994) Pharmacokinetic properties of nitroxide-labelled albumin in mice. Life Sci. 54, 503–509.Google Scholar
  61. Liedtke, S., Zimmermann, E., Müller, R.H. and Mäder, K. (1999) Physical characterisation of solid lipid Nanoparticles (SLNTM). Proc. 26. Int. Symp. Control. Rel. Bioact. Mater. Google Scholar
  62. Liu, K.J., Mäder, K., Shi, X. and Swartz, H.M. (1997) Reduction of carcinogenic Cr(VI) on the skin of living rat. Magn. Res. Med. 38, 524–526.Google Scholar
  63. Liu, K.J., Shi, X.L., Jiang, J.J., Goda, F., Dalai, N., Swartz, H.M.(1996) Low frequency electron paramagnetic resonance investigation on metabolism of chromium (VI) by whole live mice. Ann. Clin. Lab. Sci. 26, 176–184.Google Scholar
  64. Liu, K.J., Jiang, J.J., Swartz, H.M. and Shi, X.G. (1994) Low frequency EPR detection of chromium (V) formation by chromium (VI) reduction in whole live mice. Arch. Biochem. Biophys. 313, 248–252.PubMedGoogle Scholar
  65. Liu, K.J., Shi, X.L., Jiang, J.J., Goda, F., Dalai, N. and Swartz, H.M. (1995a) Chromate-induced Chromium(V) formation in live mice and its control by cellular antioxidants: An L-band electron paramagnetic resonance study. Arch. Biochem. Biophys. 323,33–39.PubMedGoogle Scholar
  66. Liu, K.J., Bacic, G., Hoopes, P.J., Jiang, J., Du, H., Ou, L.C., Dunn, J.F. and Swartz, H.M. (1995b) Assessment of cerebral pO;2 by EPR oximetry in rodents: effects of anesthesia, ischemia, and breathing gas. Brain Res. 685, 91–98.PubMedGoogle Scholar
  67. Liu, K.J., Gast, P., Moussavi, M., Norby, S.W., Vahidi, N., Walczak, T., Wu, M. and Swartz, H.M. (1993) Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems, Proc. Natl. Acad. Sci USA 90, 5438–5442.PubMedCentralPubMedGoogle Scholar
  68. Lurie, J., Bussell, D.M., Bell, L.H., Mallard, J.R. (1988) Proton-electron double resonance imaging of free radicals solutions. J. Magn. Reson. 76, 366–370.Google Scholar
  69. Mäder, K., Stösser, R. and Borchert, H.H. (1992) Transcutaneous absorption of nitroxide radicals detected in vivo by means of X-Band ESR. Pharmazie 47, 946–947.PubMedGoogle Scholar
  70. Mäder, K., Stösser, R. and Borchert, H.H. (1993) Detection of free radicals in living mice after inhalation of DTBN by X-Band ESR. Free Radic. Biol. Med. 14, 339–342.PubMedGoogle Scholar
  71. Mäder, K., Bacic, G., and Swartz, H.M. (1995) In vivo detection of anthralin derived free radicals in the skin of hairless mice by low frequency electron paramagnetic resonance spectroscopy. J. Invest. Dermatol. 104, 514–517.PubMedGoogle Scholar
  72. Mäder, K., Gallez, B., Liu, K.J. and Swartz, H.M. (1996a) Noninvasive in vivo characterisation of release processes in biodegradable polymers by low frequency Electron Paramagnetic Resonance Spectroscopy. Biomat. 17,459–463.Google Scholar
  73. Mäder, K., Domb, A. and Swartz, H.M. (1996b) Gamma sterilization induced radicals in biodegradable drug delivery systems. App! Rad Isot, 47, 1669–1674.Google Scholar
  74. Mäder, K., Gallez, B. and Swartz, H.M. (1996c) In vivo EPR: an effective new tool for studying pathophysiology, physiology and pharmacology. Appl. Radiat. Isot. 47, 1663–1667.Google Scholar
  75. Mäder, K., Cremmilleux, Y., Domb, A., Dunn, J.F. and Swartz, H.M. (1997a) In vitrolin vivo comparison of drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides - a noninvasive approach by the combined use of Electron Paramagnetic Resonance Spectroscopy and Nuclear Magnetic Resonance Imaging. Pharm. Res. 14, 820–826.PubMedGoogle Scholar
  76. Mäder, K., Bacic, G., Domb, A., Elmalak, O., Langer, R., and Swartz, H.M. (1997b) Noninvasive in vivo monitoring of drug release and polymer erosion from biodegradable polymers by EPR spectroscopy and NMR imaging. J. Pharm. Sci. 86, 126–134.PubMedGoogle Scholar
  77. Mader, K., Nitschke, S., Stösser, R., Borchert, H.-H. and Domb, A. (1997c) Nondestructive and localised assesment of acidic microenvironments inside biodegradable polyanhydrides by spectral spatial Electron Paramagnetic Resonance Imaging (EPRI). Polymer 38, 4785–4794.PubMedGoogle Scholar
  78. Mäder, K., Bittner, B., Li, Y., Wohlauf, W. and Kissel, T. (1998) Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from polylactide-co-glycolide) (PLG) or ABA -triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethylenoxide) B blocks. Pharm. Res. 15,787–793.PubMedGoogle Scholar
  79. McNamara, M.T., Wesbey, G.E., Brasch, R.C., Sievers, R., Lipton, M.J. and Higgins, C.B. (1985) Magnetic resonance of acute myocardial infarction using a nitroxyl spin label (PCA) Invest. Radiol. 20, 591–595.PubMedGoogle Scholar
  80. Michel, A., Fernandez, J.P., Subra, G., Pull, L. and Bonnet, P.A. (1989) Pharmacokinetic study of tempo carboxylic acid, a nitroxyl MRI contrast media, in control and streptozotocin diabetic rats. J. Pharm. Pharmacol. 41,561–563.PubMedGoogle Scholar
  81. Mitchell, J.B., DeGraff, W., Kaufman, D., Krishna, M.C., Samuni, A., Finkelstein, E., Ahn, M.S., Hahn, S.M., Gamson, J. and Russo, A. (1991) Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, Tempol. Arch. Biochem. Biophys. 289,62–70.PubMedGoogle Scholar
  82. Miura, Y., Utsumi, H. and Hamada, A. (1992) Effects of inspired oxygen concentration on in vivo redox reaction of nitroxide radicals in whole mice. Biochem. Biophys. Res. Commun. 182,1108–1114. Google Scholar
  83. Miura, Y., Utsumi, H., Hamada, A. (1993) Antioxidant activity of nitroxide radicals in lipid peroxidation of rat liver microsomes. Arch. Biochem. Biophys. 300, 148–156.Google Scholar
  84. Nakashima, T., Goda, F., Jiang, J., Shima, T. and Swartz HM (1995) Use of EPR oximetry with India ink to measure the pO2 in the liver in vivo in mice. Magn. Reson. Med. 34,888–892.PubMedGoogle Scholar
  85. O’Hara, J.A., Goda, F., Liu, K.J., Bacic, G., Hoopes, P.J. and Swartz, H.M. (1995) The pO2 in a murine tumor after irradiation: an in vivo electron paramagnetic resonance study. Radiat. Res. 144,222–229.PubMedGoogle Scholar
  86. Park, K. (1997) Controlled drug delivery: Challenges and strategies. ACS, Washington.Google Scholar
  87. Quaresima, V., Alecci, M., Ferrari, M. and Sotgiu, A. (1992) Whole rat electron paramagnetic resonance imaging of a nitroxide free radical by a radio frequency (280 MHz) spectrometer. Biochem. Biophys. Res. Commun. 183,829–835.PubMedGoogle Scholar
  88. Quaresima, V., Ursini, C.L., Gualtieri, G., Sotgiu, A. and Ferrari, M. (1993) Oxygen-dependent reduction of a nitroxide free radical by electron paramagnetic resonance of circulating rat blood. Biochim. Biophys. Acta 1182, 115–118.PubMedGoogle Scholar
  89. Ruckerbauer, F., Sprunck, M. and Regulla D.F. (1996) Numerical signal treatment for optimized alanine/ESR dosimetry in the therapy-level dose range. Appl. Rad. Isot. 47, 1263–1268.Google Scholar
  90. Saito, K., Yoshioka, H., Kazama, S. and Cutler, R.G. (1998) Release of nitric oxide from a spin trap, N-tert-butyl-alpha-phenylnitrone, under various oxidative conditions. Biol. Pharm. Bull. 21, 401–404.PubMedGoogle Scholar
  91. Samuni, A., Winkelsberg, D., Pinson, A., Hahn, S.M., Mitchell, J.B. and Russo, A. (1991) Nitroxide stable radicals protect beating cardiomyocytes against oxidative damage. J. Clin. Invest. 87,1526–1530.PubMedCentralPubMedGoogle Scholar
  92. Sano, T., Umeda, F., Hashimoto, T., Nawata, H., Utsumi, H. (1998) Oxidative stress measurement by in-vivo electron spin resonance spectroscopy in rats with sterptozotocininduced diabetes. Diabetologia 41, 1355–1360.PubMedGoogle Scholar
  93. Siemann, D.W., Horsman, M.R. and Chaplin, D.J. (1998) Modification of oxygen supply, in Blood perfusion and microenvironment of human tumors. Implications for radiooncology. Molls, M. and Vaupel, P., eds, Springer-Verlag, Berlin, 209–217.Google Scholar
  94. Sies, H. and Mehlhorn’ (1986) Mutagenicity of nitroxide free radicals. Arch. Biochem. Biophys. 251, 393–396.PubMedGoogle Scholar
  95. Sintzel, M.B., Schwach-Abdellaoui, K., Mäder, K., Stösser, R., Heller, J., Tabatabay, C. and Gurny, R. (1998) Influence of irradiation sterilization on semi-solid poly(ortho ester). Int. J. Pharm. 175,165–176.Google Scholar
  96. Song, C.W. (1998) Modification of blood flow, in Blood perfusion and microenvironment of human tumors. Implications for radiooncology. Molls, M. and Vaupel, P., eds, Springer-Verlag, Berlin, 193–207.Google Scholar
  97. Stösser, R., Mäder, K., Borchert, H.H., Herrmann, W., Schneider, G., Liero, A. (1995) Pharmaceutical aspects of ESR investigations on drug delivery systems, tissues and living systems, in Bioradicals detected by ESR spectroscopy, Ohya-Nishiguchi, H., Paker, L. eds, Birkhauser Verlag, Basel, 302–320.Google Scholar
  98. Suzuki, Y., Fujii S, Numagami Y, Tominaga T, Yoshimoto T, Yoshimura T (1998) In vivo nitric oxide detection in the septic rat brain by electron paramagnetic resonance. Free Rad. Res. 28, 293–299.Google Scholar
  99. Swartz, H.M. and Glockner, J.F. (1992) Measurement of oxygen by EPRI and EPRS, in EPR imaging and in vivo EPR, Eaton, G.R., Eaton, S.S., Ohno, K., CRC Press, Boca Raton, 261–290.Google Scholar
  100. Swartz, H.M. (1987) Use of nitroxides to measure redox metabolism in cells and tissues. J. Chem. Soc. Faraday Trans.], 83, 191.Google Scholar
  101. Swartz, H.M., Chen, K., Pals, M.A., Sentjurc, M., Morse, P.D. (1986) Hypoxia-sensitive NMR contrast agents. Magn. Reson. Med. 3, 169.PubMedGoogle Scholar
  102. Swartz, H.M. and Berliner, L.J. (1998) In vivo EPR, in Foundations of modern EPR, World Scientific, Singapore, Eaton, G.R., Eaton, S.S. and Salikhov, K.M., 361–378.Google Scholar
  103. Takeshita, K., Utsumi, H. and Hamada, A. (1991) ESR measurement of radical clearance in lung of whole mouse. Biochem. Biophys. Res. Commun. 177, 874–880.PubMedGoogle Scholar
  104. Tanigawa, T., Yoshikawa, T., Minamiyama, Y., Takahashi, S., Ando, T., Naito, Y., Morita, Y. and Kondo, M. (1993) Detection of free radicals in the blood of animals using extracorporeal circulation. Free Rad. Res. Commun. 19,5171-S176.Google Scholar
  105. Twomey, P., Taira, J., DeGraff, W., Mitchell, J.B., Russo, A, Krishna, M.C., Hankovszky, O.H., Frank, L.. and Hideg, K. (1997) Direct evidence for in vivo nitroxide free radical production from a new antiarrhythmic drug by EPR spectroscopy. Free Rad. Biol. Med. 22,909–916.Google Scholar
  106. Utsumi, H., Muto, E., Masuda, S. and Hamada, A. (1990) In vivo ESR measurement of free radicals in whole mice. Biochem. Biophys. Res. Commun. 172,1342–1348. Google Scholar
  107. Utsumi, H., Ichikawa, K., Takeshita, K. (1995) In vivo ESR measurements of free radical reactions in living mice. Toxicol. Lett. 82/83, 561–565.PubMedGoogle Scholar
  108. Vrhovnik, K., Kristl, J., Sentjurc, M. and Smid-Korbar, J. (1998) Influence of liposome bilayer fluidity on the transport of encapsulated substance into the skin as evaluated by EPR. Pharm. Res. 15, 525–530.PubMedGoogle Scholar
  109. Wu, M.P., Tamada, J.A., Brem, H. and Langer, R. (1994) In vivo versus in vitro degradation of controlled release polymers for intracranial surgery. JBiomed Mat Res 28,387–395.Google Scholar
  110. Yamaguchi, T., Itai, S., Hayashi, H., Soda, S., Hamada, A. and Utsumi H. (1996) In vivo ESR studies on pharmacokinetics and metabolism of parenteral lipid emulsion in living mice. Pharm. Res. 13, 729–733.PubMedGoogle Scholar
  111. Yoshimura, T., Yokoyama, H., Fujii, S., Takayama, F., Oikawa, K. and Kamada H (1996) In-Vivo EPR Detection and Imaging of Endogenous Nitric-Oxide in LipopolysacchanideTreated Mice. Nature Biotechnol 14, 992–994.Google Scholar
  112. Zweier, J.L., Chzhan, M., Ewert, U., Schneider, G. and Kuppusamy, P. (1994) Development of a highly sensitive probe for measuring oxygen in biological tissues. J. Magn. Reson. B. 105, 52–57.PubMedGoogle Scholar
  113. Zweier, J.L., Samouilov, A. and Chzhan, M. (1995) Measurement of nitric oxide with a solidstate-char EPR probe. J. Magn. Reson. B 109,259–263.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Karsten Mäder
    • 1
    • 2
  • Bernard Gallez
    • 1
    • 2
  1. 1.Department of Pharmaceutical SciencesFree UniversityBerlinGermany
  2. 2.Laboratory of Medicinal Chemistry and Radiopharmacy, Laboratory of Biomedical Magnetic ResonanceUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations