Skip to main content

Chemistry and Biology of Nitric Oxide

  • Chapter
In Vivo EPR (ESR)

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 18))

  • 303 Accesses

Abstract

Nitrosyl iron complexes have been studied by electron paramagnetic resonance (EPR) since 1965. However no connection was made between EPR observations of nitrosyl complexes found in vivo and biosynthesis of nitric oxide until the latter had been independently discovered by biochemists and pharmacologists. The aim of this chapter is to provide an introduction to the basic chemistry and biology of nitric oxide with particular emphasis on EPR experiments and their interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, T., Noguchi, Y., Ijiri, S., Setoguchi, K., Suga, M., Zheng, Y. M., Dietzschold, B. and Maeda, H. (1996) Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals.Proc. Natl. Acad. Sci. USA 93 2448–2453.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alderton, W. K., Cooper, C. E., Knowles, R. G. (2001) Nitric oxide synthases: structure, function and inhibition.Biochem 1 357 593–615.

    Google Scholar 

  • Augusto, O., Gatti, R. M. and Radi, R. (1994) Spin-trapping studies of peroxynitrite decomposition and 3-morpholinosydnonimine N-ethylcarbamide auto-oxidation.Arch. Biochem. Biophys 310 118–125.

    CAS  PubMed  Google Scholar 

  • Azhipa, Y. I., Kayushin, L. P. and Nikishkin E. I. (1966) Electron paramagnetic resonance of tissues of animals on exposure to certain forms of tissue hypoxia.Biofizika (Rus.) 11 710–713.

    Google Scholar 

  • Bazylinski, D. A., Hollocher, T. C. (1985) Metmyoglobin and methemoglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aqueous solution.J Am. Chem. Soc 107 7982–7986.

    CAS  Google Scholar 

  • Becker, K., Savvides, S. N., Keese, M., Schirmer, R. H. and Karplus, P. A. (1998) Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers.Nature Struct. Biol 5, 267–271.

    CAS  PubMed  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marchall, P. A. and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci. USA 87 1620–1624.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beckman, J. S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., Harrison, J., Martin, J. C. and Tasi, M. (1992) Kinetics of superoxide dismutase and iron catalyzed nitration of phenolics by peroxynitrite.Arch. Biochem. Biophys 298 438–445.

    CAS  PubMed  Google Scholar 

  • Beckman, J. S. (1996) The physiological and pathological chemistry of nitric oxide. InNitric Oxide: Principles and Actions (Lancaster, J., Jr., ed), pp 1–82, Academic Press, San Diego, CA.

    Google Scholar 

  • Beinert, H. (1990) Recent developments in the field of iron-sulfur proteins.FASEB J 4 2483–2491.

    CAS  PubMed  Google Scholar 

  • Benjamin, N., O’Driscoll, F., Duncan, C., Smith, L., Golden, M., McKenzie, H. (1994) Stomach NO synthesis.Nature 368 502.

    CAS  PubMed  Google Scholar 

  • Berliner, L. J., Khramtsov, V., Fujii, H., Clanton, T. L. (2001) Unique in vivo applications of spin traps.Free Radic. Biol. Med 30 489–499.

    CAS  PubMed  Google Scholar 

  • Boese, M., Mordvintcev, P. I., Vanin, A. F., Busse, R. and Mülsch, A. (1995) S-nitrosation of serum albumin by dinitrosyl-iron complex.J. Biol. Chem 270 29244–29249.

    CAS  PubMed  Google Scholar 

  • Bohme, G. A., Bon, C., Lemaire, M., Reibaud, M., Piot, O., Stutzmann, J. M., Doble, A. and Blanchard, J. C. (1993) Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats.Proc. Natl. Acad. Sci. USA 90 9191–9194.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borrello, S., De Leo, M. E., Landriscina, M., Palazzotti, B. and Galeotti, T. (1996) Diethyldithiocarbamate treatment up regulates manganese superoxide dismutase gene expression in rat liver.Biochem. Biophys. Res. Commun 220 546–552.

    CAS  PubMed  Google Scholar 

  • Bouton, C., Hirling, H. and Drapier, J.-C. (1997) Redox modulation of iron regulatory proteins by peroxynitrite.J. Biol. Chem 272 19969–19975.

    CAS  PubMed  Google Scholar 

  • Brennan, M. J., Cole, T. and Singley, J. A. (1966) A unique hyperfine ESR spectrum in mouse neoplasms analyzed by computer simulation.Proc. Soc. Exp. Biol. Med 123 715–718.

    CAS  PubMed  Google Scholar 

  • Brewer, G. A., Butcher, R. J., Letafat, B. and Sinn, E. (1983) Spectral analysis of bis(N,Ndiisopropyldithiocarbamato) nitrosyliron Fe(NO)[S2CN(CH(CH3)2)2]2and preparation and crystal structure of its cobalt analogue.Inorg. Chem 22,371–375.

    CAS  Google Scholar 

  • Brons, H. J., Hagen, W. R. and Zehnder, A. J. B. (1991) Ferrous iron dependent nitric oxide production in nitrate reducing cultures ofEscherichia coll. Arch. Microbio! 155 341–347.

    CAS  Google Scholar 

  • Brown, G. C. (1995) Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase.FEBSLett 369 136–139.

    CAS  Google Scholar 

  • Brune, A. J., Shergill, J. K., Cammack, R., Cook, H. T. (1995) L-arginine depletion by arginase reduces nitric oxide production in endotoxic shock: an electron paramagnetic resonance study.FEBS Lett 366 127–130.

    Google Scholar 

  • Brüne, B., Von Knethen, A., Sandau, K. B. (1998) Nitric oxide and its role in apoptosis.Eur. J. Pharmacol 351, 261–272.

    PubMed  Google Scholar 

  • Brunton, T.L. (1867) On the use of nitrite of amyl in angina pectoris.Lancet 2 97–98.

    Google Scholar 

  • Burney, S., Caulfield, J. L., Niles, J. C., Wishnok, J. S. and Tannenbaum, S. R. (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite.Mutation Res 424 37–49.

    CAS  PubMed  Google Scholar 

  • Busse, R. and Fleming, I. (1998) Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors.J. Vase. Res 35, 73–84.

    CAS  Google Scholar 

  • Butler, A. R., Flitney, F. W. and Williams, D. L. H. (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist’s perspective.Trends Pharmacol. Sci 16 18–22.

    CAS  PubMed  Google Scholar 

  • Butler, A. R., Williams, D. L. H. (1993) The physiological role of nitric oxide.Chem. Soc. Rev 22 233–241.

    CAS  Google Scholar 

  • Calapai, G., Squadrito, F., Altavilla, D., Zingarelli, B., Campo, G. M., Cilia, M. and Caputi, A. P. (1992) Evidence that nitric oxide modulates drinking behaviour.Neuropharmacol 31 761–764.

    CAS  Google Scholar 

  • Cammack, R. and Cooper, C. E. (1993) Electron paramagnetic resonance spectroscopy of iron complexes and iron-containing proteins.Methods Enzymol 227, 353–384.

    CAS  PubMed  Google Scholar 

  • Cassina, A. and Radi, R. (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport.Arch. Biochem. Biophys 328 309–316.

    CAS  PubMed  Google Scholar 

  • Chen, Y. and Rosazza, J. P. N. (1994) A bacterial nitric oxide synthase from aNocardia species.Biochem. Biophys. Res. Commun 203 1251–1258.

    CAS  PubMed  Google Scholar 

  • Clementi, E., Brown, G. C., Feelisch, M. and Moncada, S. (1998) Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione.Proc. Natl. Acad. Sci. USA 95 7631–7636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornforth, D. (1996) Role of nitric oxide in treatment of foods. InNitric Oxide: Principles and Actions (Lancaster, J., Jr., ed), pp 259–287. Academic Press, San Diego, CA.

    Google Scholar 

  • Crane, B. R., Arvai, A. S., Gachhui, R., Wu, C., Ghosh, D. K., Gertzoff, E. D., Stuehr, D. J., Tainer, J. A. (1997) The structure of nitric oxide synthase oxygenase domain and inhibitor complexes.Science 278 425–431.

    CAS  PubMed  Google Scholar 

  • Crane, B. R., Arvai, A. S., Ghosh, D. K., Wu, C., Getzoff, E. D., Stuehr, D. J., Tainer, J. A. (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate.Science 279 2121–2126.

    CAS  PubMed  Google Scholar 

  • Darley-Usmar, V., Wiseman, H., Halliwell, B. (1995) Nitric oxide and oxygen radicals: a question of balance.FEBSLett 369 131–135.

    CAS  Google Scholar 

  • Dawson, T. M. (1998) Nitric oxide, PARP and other perpetrators relevant to stroke and neurodegeneration. InNitric Oxide: Basic Research and Clinical Applications (Abstracts ), Oct. 15–16, Institut Pasteur, Paris.

    Google Scholar 

  • Denicola, A., Souza, J. M. and Radi, R. (1998) Diffusion of peroxynitrite across erythrocyte membranes.Proc. Natl. Acad. Sci. USA 95 3566–3571.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickinson, E., Tuncer, R., Nadler, E., Boyle, P., Alber, S., Watkins, S., Ford, H. (1999) NOX, a novel nitric oxide scavenger, reduces bacterial translocation in rats after endotoxin challenge.Am. J. Physiol 277 G1281–G1287.

    CAS  PubMed  Google Scholar 

  • Ding, J. M., Chen, D., Weber, E. T., Faiman, L. E., Rea, M. A., Guillette, M. U. (1994) Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO.Science 266 1713–1717.

    CAS  PubMed  Google Scholar 

  • Drapier, J.-C. (1997) Interplay between NO and [Fe-S] clusters: relevance to biological systems.Methods: Companion Methods Enzymol 11 319–329.

    CAS  Google Scholar 

  • Drapier, J.-C. and Hibbs, J. B., Jr. (1988) Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells result in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells.J. Immunol 190 2829–2838.

    Google Scholar 

  • Drapier, J. -C., Pellat, C. and Henry, Y. (1991) Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages.J. Biol. Chem 266 10162–10167.

    CAS  PubMed  Google Scholar 

  • Duncan, C., Dougall, H., Johnston, P., Green, S., Brogan, R., Leifert, C., Smith, L., Golden, M. and Benjamin, N. (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nature Med I 546–551.

    Google Scholar 

  • Edelman, G. M. and Gaily, J. A. (1992) Nitric oxide: linking space and time in the brain.Proc. Natl. Acad. Sci. USA 89 11651–11652.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eliasson, M. J. L., Sampei, K., Mandir, A. S., Hum, P. D., Traystman, R. J., Bao, J., Pieper, A., Wang, Z.-Q., Dawson, T. M., Snyder, S. H. and Dawson, V. L. (1997) Poly(ADPribose) polymerase gene disruption renders mice resistant to cerebral ischemia.Nature Med 3, 1089–1095.

    CAS  Google Scholar 

  • Emanuel, N. M., Saprin, A. N., Shabalkin, V. A., Kozlova, L. E. and Kruglijakova, K. E. (1969) Detection and investigation of a new type of ESR signal characteristic of some tumor tissues.Nature 222 165–167.

    CAS  PubMed  Google Scholar 

  • Encyclopaedia Britannica (1998)15 th edn 8 p. 726.

    Google Scholar 

  • Feelisch, M., Poel, M., Zamora, R., Deussen, A. and Moncada, S. (1994) Understanding the controversy over the identity of EDFR.Nature 368 62–65.

    CAS  PubMed  Google Scholar 

  • Fichtlscherer, B., Mülsch, A. (2000) MR Imaging of nitrosyl-iron complexes: experimental study in rats.Radiol 216 225–231.

    CAS  Google Scholar 

  • Fleming, I., Bauersachs, J., Fisslthaler, B., Busse, R. (1998) Cat+-Independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress.Circ. Res 82 686–695.

    CAS  PubMed  Google Scholar 

  • Fontecave, M. and Pierre, J.-L. (1994) The basic chemistry of nitric oxide and its possible biological reactions.Bull. Soc. Chim. Fr 131 620–631.

    CAS  Google Scholar 

  • Foster, M. A. and Hutchison, J. M. (1974) The origin of an ESR signal at g equals 2.03 from normal rabbit liver and the effects of nitrites upon it.Phys. Med. Biol 19 289–302.

    CAS  PubMed  Google Scholar 

  • Free, A. H. and Free, H. M. (1975)Urinalysis in Clinical Laboratory Practice pp 103–112, CRC Press, Cleveland, OH.

    Google Scholar 

  • Fujii, H., Koscielniak, J. and Berliner, L. J. (1997) Determination and characterization of nitric oxide generation in mice by in-vivo L-band EPR spectroscopy.Magn. Reson. Med 38, 565–568.

    CAS  PubMed  Google Scholar 

  • Fujii, H., Wan, X., Zhong, J., Berliner, L.J. and Yoshikawa, K. (1999) In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping.Magn. Reson. Med 42 235–239.

    CAS  PubMed  Google Scholar 

  • Fujii, S., Yoshimura, T. and Kamada, H. (1996) Nitric oxide trapping efficiencies of water-soluble iron (III) complexes with dithiocarbamate derivatives.Chem. Lett 9 785–786.

    Google Scholar 

  • Fukuto, J. M., Cho, J. Y., Switzer, C. H. (2000) The chemical properties of nitric oxide and related nitrogen oxides. InNitric Oxide: Biology and Pathobiology (Ignarro, L. J., ed), pp 23–40, Academic Press, San Diego, CA.

    Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature 288 373–376.

    CAS  PubMed  Google Scholar 

  • Galleano, M., Aimo, L., Borroni, M. V., Puntarulo, S. (2001) Nitric oxide and iron overload: Limitations of ESR detection by DETC.Toxicol 167 199–205.

    CAS  Google Scholar 

  • Carcia-Cardeña, G., Martasek, P., Masters, B. S. S., Skidd, P. M., Couet, J., Li, S., Lisanti, M. P. and Sessa, W. C. (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin.J. Biol. Chem 272 25437–25440.

    Google Scholar 

  • García-Cardeña, G., Fan, R., Shah, V., Sorrentino, R., Chino, G., Papapetropoulos, A. and Sessa, W. C. (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90.Nature 392 821–824.

    PubMed  Google Scholar 

  • Gibson, J. F. (1962) Unpaired electron in nitroso-bis (dimethyldithiocarbamato) iron (II)Nature 196 64.

    CAS  Google Scholar 

  • Giulivi, C. (1998) Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism.Biochem. J 332 673–679.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorbunov, N. V., Osipov, A. N., Day, B. W., Zayas-Rivera, B., Kagan, V. E. and Elsayed, N. M. (1995) Reduction of ferrylmyoglobin and ferrylhemoglobin by nitric oxide: a protective mechanism against ferryl hemoprotein-induced oxidations.Biochem 34, 6689–6699.

    CAS  Google Scholar 

  • Gorren, A. C. F., de Boer, E. and Weyer, R. (1987) The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes.Biochim. Biophys. Acta 916 38–47.

    CAS  PubMed  Google Scholar 

  • Gruetter, C. A., Barry, B. K., McNamara, D. B., Gruetter, D. Y., Kadowitz, P. J. and Ignarro, L. J. (1979) Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine.J. Cyclic Nucleotide Protein Phosphorylation Res 5, 211–224.

    CAS  Google Scholar 

  • Hare, J. M. and Stamler, J. S. (1999) NOS: Modulator, not mediator of cardiac performance.Nature Med 5, 273–274.

    CAS  PubMed  Google Scholar 

  • Hassessian, H. and Bumstock, G. (1995) Interacting roles of nitric oxide and ATP in the pulmonary circulation of the rat.Br. J. Pharmacol 114 846–850.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hausladen, A. and Fridovich, I. (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not.J. Biol. Chem 269 29405–29408.

    CAS  PubMed  Google Scholar 

  • Hecker, M., Boese, M., Schini-Kerth, V. B., Mülsch, A. and Busse, R. (1995a) Characterization of the stable L-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells as an NG-hydroxy-L-arginine-nitric oxide adduct.Proc. Natl. Acad. Sci. USA 92 4671–4675.

    CAS  Google Scholar 

  • Hecker, M., Schott, C., Bucher, B., Busse, R., Stoclet, J.-C. (1995b) Increase in serum NGhydroxy-L-arginine in rats treated with bacterial lipopolysaccharide.Eur. I Pharmacol 275 R1–R3.

    CAS  Google Scholar 

  • Heikkila, R. E., Cabbat, F. S. and Cohen, G. (1976)In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate.I Biol. Chem 251 2182–2185.

    CAS  Google Scholar 

  • Henry, Y., Lepoivre, M., Drapier, J.-C., Ducrocq, C., Boucher, J.-L. and Guissani, A. (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles.FASEBJ 7 1124–1134.

    CAS  Google Scholar 

  • Henry, Y. A. (1997a) Utilization of nitric oxide as a paramagnetic probe of the molecular oxygen binding site of metalloenzymes. InNitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds (Henry Y., Guissani A., and Ducastel B., eds) pp 99–143, R. G. Landes Company, Austin, TX.

    Google Scholar 

  • Henry, Y. A. (1997b) The use of EPR spectroscopy for the identification of the nature of endothelium-derived relaxing factor. InNitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds (Henry, Y. A., Guissani, A. and Ducastel, B., eds), pp 193–204, R. G. Landes Company, Austin, TX

    Google Scholar 

  • Henry, Y. A., Ducastel, B. and Guissani, A. (1997a) Basic chemistry of nitric oxide and related nitrogen oxides. InNitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds (Henry Y., Guissani A. and Ducastel B., eds) pp 15–46, R. G. Landes Company, Austin, TX.

    Google Scholar 

  • Henry, Y. A., Ducastel, B. and Guissani, A. (1997b) Enzymatic targets of nitric oxide as detected by EPR spectroscopy within mammal cells. InNitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds (Henry, Y. A., Guissani, A. and Ducastel, B., eds), pp 205–233, R. G. Landes Company, Austin, TX.

    Google Scholar 

  • Hess, D. T., Patterson, S. I., Smith, D. S. and Skene, J. H. P. (1993) Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide.Nature 366 562–565.

    CAS  PubMed  Google Scholar 

  • Hille, R., Olson, J. S. and Palmer, G. (1979) Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin.J. Biol. Chem 254 12110–12120.

    CAS  PubMed  Google Scholar 

  • Hobbs, A. J., Fukuto, J. M. and Ignarro, L. J. (1994) Formation of free nitric oxide from Larginine by nitric oxide synthase: Direct enhancement of generation by superoxide dismutase.Proc. Natl. Acad. Sci. USA 91 10992–10996.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hogg, N., Singh, R. J., Kalyanaraman, B. (1996) The role of glutathione in the transport and catabolism of nitric oxide.FEBS Lett 382 223–228.

    CAS  PubMed  Google Scholar 

  • Hollocher, T. (1996) The enzymology and occurrence of nitric oxide in the biological nitrogen cycle. InNitric Oxide: Principles and Actions (Lancaster, J., Jr., ed), pp 289–344, Academic Press, San Diego, CA.

    Google Scholar 

  • Hooper, D. C., Ohnishi, S. T., Kean, R., Numagami, Y., Dietzschold, B. and Koprowski, H. (1995) Local nitric oxide production in viral and autoimmune diseases of the central nervous system.Proc. Natl. Acad. Sci. USA 92 5312–5316.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. and Fishman, M. C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene.Cell 75, 1273–1286.

    CAS  PubMed  Google Scholar 

  • Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bean, J. A. and Fishman, M. C. (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase.Nature 377, 239–242.

    CAS  PubMed  Google Scholar 

  • Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M. C., Moskowitz, M. A. (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase.Science 265 1883–1885.

    CAS  PubMed  Google Scholar 

  • Hughes, M. N. (1999) Relationship between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite.Biochim. Biophys. Acta 1411 263–272.

    CAS  PubMed  Google Scholar 

  • Ladecola, C., Zhang, F. and Xu, X. (1993) Role of nitric oxide synthase-containing vascular nerves in cerebrovasodilation elicited from cerebellum.Am. J. Physiol 264 R738–R746.

    Google Scholar 

  • Ignarro, L. J., Buga, G. M., Woods, K. S., Byrns, R. E. and Chaudrhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc. Natl. Acad. Sci. USA 84 9265–9269.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ignarro, L. J. (1992) Pharmacological, biochemical, and chemical evidence that EDRF is NO or a labile nitroso precursor. InEndothelial Regulation of Vascular Tone (Ryan, U. S. and Rubanyi, G. M., eds), pp 37–49, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Ignarro, L. J. (1996) Nitric oxide as a communication signal in vascular and neuronal cells. InNitric Oxide: Principles and Actions (Lancaster, J. Jr., ed) pp 111–137, Academic Press, San Diego, CA.

    Google Scholar 

  • Ileperuma, O. A. and.Feltham, R. D. (1977) Iron-sulfur complexes of NO. 2. Synthesis and exchange studies of Fe(NO)X[S2CN(CH3)2]2.Crystal and molecular structure ofcisFe(NO)(NO2)(S2CN(C2H5)2)2• Inorg.Chem 16 1876–1883.

    CAS  Google Scholar 

  • James, P. E., Liu, K. J., Swartz, H. M. (1998) Direct detection of tissue nitric oxide in septic mice. InOxygen Transport to Tissue XX (Hudetz, A. G. and Bruley, D. F., eds), pp 181–187, Plenum Press, New York.

    Google Scholar 

  • Janoff, A. and Zweifach, B. W. (1960) Inactivation of bacterial exotoxins and endotoxin by iron.J. Exp. Med 112 23–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins, D. C., Charles, I. G., Thomsen, L. L., Moss, D. W., Holmes, L. S., Baylis, S. A., Rhodes, P., Westmore, K., Emson, P. C. and Moncada, S. (1995) Roles of nitric oxide in tumor growth.Proc. Natl. Acad. Sci. USA 92 4392–4396.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia, L., Bonaventura, C., Bonaventura, J. and Stamler, J. S. (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control.Nature 380 221–226.

    CAS  PubMed  Google Scholar 

  • Jiang, J., Jordan, S. J., Barr, D. P., Gunther, M. R., Maeda, H. and Mason, R. P. (1997)In vivo production of nitric oxide in rats after administration of hydroxyurea Mol. Pharmacol 52 1081–1086.

    CAS  PubMed  Google Scholar 

  • Kagan, V. E., Day, B. W., Elsayed, N. M., Gorbunov, N. V. (1996) Dynamics of haemoglobin.Nature 383 30–31.

    CAS  PubMed  Google Scholar 

  • Kanner, J. (1996) Nitric oxide and metal-catalyzed reactions. Methods Enzymol 269 218–229.

    CAS  PubMed  Google Scholar 

  • Kelman, D. J. and Mason, R. P. (1993) Characterization of the rat hemoglobin thiyl free radical formed upon reaction with phenylhydrazine.Arch. Biochem. Biophys 306 439–442.

    CAS  PubMed  Google Scholar 

  • Kennedy, M. C., Gan, T., Antholine, W. E. and Petering, D. H. (1993) Metallothionein reacts with Fee+and NO to form products with g = 2.039 ESR signal.Biochem. Biophys. Res. Commun 196 632–635.

    CAS  PubMed  Google Scholar 

  • Kennedy, M. C., Antholine, W. E. and Beinert, H. (1997) An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide.J. Biol. Chem 272 20340–20347.

    CAS  PubMed  Google Scholar 

  • Kolb, H. and Kolb-Bachofen, V. (1998) Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator?Immunol. Today 19 556–561.

    CAS  PubMed  Google Scholar 

  • Komarov, A. M., Mattson, D. L., Jones, M. M., Singh, P. K. and Lai, C.-S. (1993) In vivo spin trapping of nitric oxide in mice.Biochem. Biophys. Res. Commun 195 1191–1198.

    CAS  PubMed  Google Scholar 

  • Komarov, A. M. and Lai, C.-S. (1995) Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy.Biochim. Biophys. Acta 1272 29–36.

    PubMed  Google Scholar 

  • Komarov, A. M., Kramer, J. H., Mak, I. T. and Weglicki, W. B. (1997a) EPR detection of endogenous nitric oxide in postischemic heart using lipid and aqueous-soluble dithiocarbamate-iron complexes.Mol. Cell. Biochem 175 91–97.

    CAS  Google Scholar 

  • Komarov, A. M., Mak, I. T., Weglicki, W. B. (1997b) Iron potentiates nitric oxide scavenging by dithiocarbamates in tissue of septic shock mice.Biochim. Biophys. Acta 1361 229–234.

    CAS  Google Scholar 

  • Komarov, A. M., Mattson, D. L., Mak, I. T., Weglicki, W. B. (1998) Iron attenuates nitric oxide level and iNOS expression in endotoxin-treated mice.FEBS Lett 424 253–256.

    CAS  Google Scholar 

  • Komarov, A. M. and Reddy, M. N. (1998) Effect of septic shock on nitrate, free amino acids, and urea in murine plasma and urine.Clin. Biochem 31 107–111.

    CAS  PubMed  Google Scholar 

  • Komarov, A. M., Mak, I. T., Weglicki, W. B. (2000a) The origin of dinitrosyl-iron complex in endothelial cells.Ann. N. Y Acad. Sci 899 407–410.

    CAS  Google Scholar 

  • Komarov, A. M., Wink, D. A., Feelisch, M. M., Schmidt, H. H. H. W. (2000b) Electron-paramagnetic resonance spectroscopy using N-methyl-D-glucamine dithiocarbamate cannot discriminate between nitric oxide and nitroxyl: implications for the detection of reaction products from NO synthase.Free Radic. Biol. Med 28 739–742.

    CAS  Google Scholar 

  • Komarov, A. M. (2000) In vivo on-line detection of NO distribution in endotoxin-treated mice by L-band ESR.Cell. Mol. Biol 46 1329–1336.

    CAS  PubMed  Google Scholar 

  • Komarov, A. M. (2002a) In vivo detection of nitric oxide distribution in mice.Mol. Cell. Biochem 234/235 387–392.

    Google Scholar 

  • Komarov, A. M. (2002b) Electron paramagnetic resonance studies of nitric oxide in living mice.Methods Enzymol 359, 66–74.

    CAS  Google Scholar 

  • Komarov, A. M., Reif, A., Schmidt, H. H. H. W. (2002) In vitro detection of nitric oxide and nitroxyl by electron paramagnetic resonance.Methods Enzymol 359, 18–27.

    CAS  PubMed  Google Scholar 

  • Koppenol, W. H. and Traynham, J. G. (1996) Nitric oxide: Nomenclature for nitrogen-and oxygen-containing compounds.Methods Enzymol 268 3–7.

    CAS  PubMed  Google Scholar 

  • Kosaka, H., Sawai, Y., Sakaguchi, H., Kumura, E., Harada, N., Watanabe, M. and Shiga, T. (1994) ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats.Am. J. Physiol 266 C1400–C1405.

    CAS  PubMed  Google Scholar 

  • Kosaka, H. and Seiyama, A. (1996) Physiological role of nitric oxide as an enhancer of oxygen transfer from erythrocytes to tissues.Biochem. Biophys. Res. Commun 218 749–752.

    CAS  PubMed  Google Scholar 

  • Kosaka, H. and Seiyama, A. (1997) Elevation of oxygen release by nitroglycerin without an increase in blood flow in the hepatic microcirculation.Nature Med 3, 456–459.

    CAS  PubMed  Google Scholar 

  • Kotake, Y., Tanigawa, T., Tanigawa, M. and Ueno, I. (1995) Spin trapping isotopically-labelled nitric oxide produced from [’15N] L-arginine and [’17O] dioxygen by activated macrophages using a water soluble Fe++-dithiocarbamate spin trap.Free Rad. Res 23 287–295.

    CAS  Google Scholar 

  • Kotake, Y., Tanigawa, T., Tanigawa, M., Ueno, I., Allen, D. R. and Lai, C.-S. (1996) Continuous monitoring of cellular nitric oxide generation by spin trapping with an irondithiocarbamate complex.Biochim. Biophys. Acta 1289 362–368.

    PubMed  Google Scholar 

  • Kröncke, K.-D., Fehsel, K. and Kolb-Bachofen, V. (1995) Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities.Biol. Chem. Hoppe-Seyler 376 327–343.

    PubMed  Google Scholar 

  • Kuppusamy, P., Ohnishi, S. T., Numagami, Y., Ohnishi, T. and Zweier, J. L. (1995) Three-dimensional imaging of nitric oxide production in the rat brain subjected to ischemiahypoxia.J. Cereb. Blood Flow Metab 15 899–903.

    CAS  PubMed  Google Scholar 

  • Kuppusamy, P., Wang, P., Samouilov, A., Zweier, J. L. (1996) Spatial mapping of nitric oxide generation in the ischemic heart using electron paramagnetic resonance imaging.Magn. Reson. Med 36 212–218.

    CAS  PubMed  Google Scholar 

  • Lai, C.-S. and Komarov, A. M. (1994) Spin trapping of nitric oxide produced in vivo in septic-shock mice.FEBSLett 345 120–124.

    CAS  Google Scholar 

  • Lai, C.-S. and Komarov, A. M. (1995) Dithiocarbamate spin traps for in vivo detection of nitric oxide produced in mice. InBioradicals Detected by ESR Spectroscopy (OhyaNishiguchi, H. and Packer, L., eds), pp 163–171, Birkhauser Verlag, Basel.

    Google Scholar 

  • Lancaster, J. R., Jr. (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide.Proc. Natl. Acad. Sci. USA 91 8137–8141.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lancaster, J., Jr. and Hibbs, J. B., Jr. (1990) EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages.Proc. Natl. Acad. Sci. USA 87 1223–1227.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lancaster, J., Jr. and Stuehr, D. J. (1996) The intracellular reactions of nitric oxide in the immune system and its enzymatic synthesis. InNitric Oxide: Principles and Actions (Lancaster, J., Jr., ed), pp 139–175. Academic Press, San Diego, CA.

    Google Scholar 

  • Laubach, V. E., Shesely, E. G., Smithies, O. and Sherman, P. A. (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death.Proc. Natl. Acad. Sci. USA 92 10688–10692.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, M., Arosio, P., Cozzi, A., and Chasteen, N. D. (1994) Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins.Biochem 33, 3679–3687.

    CAS  Google Scholar 

  • Letts, G., Garvey, D., Marek, P., Saha, J., Schroeder, J., Shelekhin, T., Tam, W., Trocha, M., Cuevas, P., Cuevas, B., Fernandez, A., Gabancho, S. and Saenz de Tejada, 1. (1998) The role of nitric oxide in impotence. InNitric oxide: Basic Research and Clinical Applications (Abstracts), Oct. 15–16, Institut Pasteur, Paris.

    Google Scholar 

  • Lincoln, J., Hoyle, C. H. V. and Burnstock, G. (1997)Nitric Oxide in Health and Disease Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Lombardi, P., Fournier, M., Bernier, J., Mansour, S., Neveu, P. and Krzystyniak, K. (1991) Evaluation of the immunomodulatory potential of diethyl dithiocarbamate derivatives.Int. J. Immunopharmacol 13, 1073–1084.

    CAS  PubMed  Google Scholar 

  • Lymar, S. V. and Hurst, J. K. (1995) Rapid reaction between peroxynitrite ion and carbon dioxide: implications for biological activity. J.Am. Chem. Soc 117 8867–8868.

    CAS  Google Scholar 

  • Lipton, S. A., Choi, Y.-B., Pan, Z.-H., Lei, S. Z., Chen, H.-S. V., Sucher, N. J., Loscalzo, J., Singel, D. J., Stamler, J. S. (1993) A redox-based mechanism for the neuroprotective and nerodestructive effects of nitric oxide and related nitroso-compounds.Nature 364 626–632.

    CAS  PubMed  Google Scholar 

  • Lizasoain, I., Moro, M. A., Knowles, R. G., Darley-Usmar, V. and Moncada, S. (1996) Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose.Biochem 1 314 877–880.

    Google Scholar 

  • Lloyd, S. S., Chang, A. K., Taylor, F. B., Jr., Janzen, E. G. and McCay, P. B. (1993) Free radicals and septic shock in primates: the role of tumor necrosis factor.Free Radic. Biol. Med 14 233–242.

    CAS  PubMed  Google Scholar 

  • MacMicking, J. D., Nathan, C., Horn, G., Chartrain, N., Fletcher, D. S., Trumbauer, M., Stevens, K., Xie, Q.-W., Sokol, K., Hutchinson, N., Chen, H. and Mudgett, J. S. (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase.Cell 81 641–650.

    CAS  PubMed  Google Scholar 

  • Mankhetkorn, S., Abedinzadeh, Z. and Houee-Levin, C. (1994) Antioxidant action of sodium diethyldithiocarbamate: Reaction with hydrogen peroxide and superoxide radical.Free Radic. Biol. Med 17, 517–527.

    CAS  PubMed  Google Scholar 

  • Maples, K. R., Kennedy, C. H., Jordan, S. J., Mason, R. P. (1990) In vivo thiyl free radical formation from hemoglobin following administration of hydroperoxides.Arch. Biochem. Biophys 277 402–409.

    CAS  PubMed  Google Scholar 

  • Martens, T., Langevin-Bermond, D. and Fleury, M. B. (1993) Dithiocarb: Decomposition in aqueous solution and effect of the volatile products on its pharmacological use.J. Pharm. Sci 82 379–383.

    CAS  PubMed  Google Scholar 

  • Mayer, B. and Hemmens, B. (1997) Biosynthesis and action of nitric oxide in mammalian cells.Trends in Biochem. Sci 22 477–481.

    CAS  Google Scholar 

  • Mayer, B., Pfeiffer, S., Schrammel, A., Koesling, D., Schmidt, K. and Brunner, F. (1998) A new pathway of nitric oxide/cyclic GMP signaling involving S-nitrosoglutathione. J.Biol. Chem 273 3264–3270.

    CAS  PubMed  Google Scholar 

  • McMahon, T. J. and Stamler, J. S. (1999) Concerted nitric oxide/oxygen delivery by hemoglobin.Methods Enzymol 301 99–114.

    CAS  PubMed  Google Scholar 

  • Menezes, J., Hierholzer, C., Watkins, S. C., Lyons, V., Peitzman, A. B., Billiar, T., Tweardy, D. J., Harbrecht, B. G. (1999) A novel nitric oxide scavenger decreases liver injury and improves survival after hemorrhagic shock.Am. J Physiol 277 G144–G151.

    CAS  PubMed  Google Scholar 

  • von Meyer, E. (1906)A History of Chemistry: From Earliest Times to the Present Day 3rd ed, pp 135–140, Macmillan and Co., London.

    Google Scholar 

  • Mikoyan, V. D., Kubrina, L. N., Vanin, A. F. (1994) EPR evidence for NO formation via L-arginine-dependent way in brain of mice in vivo.Biofzika (Rus.) 39, 915–918.

    CAS  Google Scholar 

  • Mikoyan, V. D., Kubrina, L. N., Serezhenkov, V. A., Stukan, R. A., Vanin, A. F. (1997) Complexes of Fee+with diethyldithiocarbamate or N-methyl-D-glucamine dithiocarbamate as traps of nitric oxide in animal tissues: comparative investigations.Biochim. Biophys. Acta 1336 225–234.

    CAS  PubMed  Google Scholar 

  • Misík, V. and Riesz, P. (1996) Nitric oxide formation by ultrasound in aqueous solutions.J Phys. Chem 100 17986–17994.

    Google Scholar 

  • Mitchell, H. H., Shonle, H. A. and Grindley H. S. (1916) The origin of the nitrates in the urine.J Biol. Chem 24 461–490.

    CAS  Google Scholar 

  • Modolell, M., Eichmann, K., Soler, G. (1997) Oxidation of NG-hydroxy-L-arginine to nitric oxide mediated by respiratory burst: an alternative pathway to NO synthesis.FEBS Lett 401 123–126.

    CAS  PubMed  Google Scholar 

  • Mohr, S., Stamler, J. S., Brune, B. (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents.FEBSLett 348 223–227.

    CAS  Google Scholar 

  • Molina, L., Studenberg, S., Wolberg, G., Kazmierski, W., Wilson, J., Tadepalli, A., Chang, A. C., Kosanke, S. and Hinshaw, L. (1996) Efficacy of treatment with the iron (III) complex of diethylenetriamine pentaacetic acid in mice and primates inoculated with live lethal dose 100Escherichia coli. J. Clin. Invest 98 192–198.

    CAS  Google Scholar 

  • Moncada, S., Radomski, M. W., Palmer, R. M. J. (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function.Biochem. Pharmacol 37, 2495–2501.

    CAS  PubMed  Google Scholar 

  • Moncada, S. and Higgs, A. (1993) The L-arginine-nitric oxide pathway.New Engl. J. Med 329 2002–2012.

    CAS  PubMed  Google Scholar 

  • Morley, J. E., Farr, S. A., Suarez, M. D. and Flood, J. F. (1995) Nitric oxide synthase inhibition and food intake: effects on motivation to eat and in female mice.Pharmacol Biochem. Behay 50 369–373.

    CAS  Google Scholar 

  • Moroz, L. L., Norby, S. W., Cruz, L., Sweedler, J. V., Gillette, R., Clarkson, R. B. (1998) Non-enzymatic production of nitric oxide (NO) from NO synthase inhibitors.Biochem. Biophys. Res. Commun 253 571–576.

    CAS  PubMed  Google Scholar 

  • Mülsch, A., Mordvintcev, P., Vanin, A. F., Busse, R. (1993a) Formation and release of dinitrosyl iron complexes by endothelial cells.Biochem. Biophys. Res. Commun 196 1303–1308.

    Google Scholar 

  • Mülsch, A., Schray-Utz, B., Mordvintcev, P. I., Hauschildt, S. and Busse, R. (1993b) Diethyldithiocarbamate inhibits induction of macrophage NO synthase.FEBS Lett 321 215–218.

    Google Scholar 

  • Mülsch, A., Lurie, D. J., Seimenis, I., Fichtlscherer, B., Foster, M. (1999) Detection of nitrosyl-iron complexes by proton-electron-double-resonance imaging.Free Rodic. Biol. Med 27 636–646.

    Google Scholar 

  • Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., Kimura, H. (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin.Adv. Cyclic Nucleotide. Res 9 145–158.

    CAS  PubMed  Google Scholar 

  • Murphy, M. E. and Sies, H. (1991) Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase.Proc. Natl. Acad. Sci. USA 88 10860–10864.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myers, P. R., Minor, R. L., Jr., Guerra, R., Jr., Bates, J. N. and Harrison, D. G. (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide.Nature 345 161–163.

    CAS  PubMed  Google Scholar 

  • Nagase, S., Takemura, K., Ueda, A., Hirayama, A., Aoyagi, K., Kondoh, M., Koyama, A. (1997) A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine.Biochem. Biophys. Res. Commun 233 150–153.

    CAS  PubMed  Google Scholar 

  • Nelson, R. J., Demas, G. E., Huang, P. L., Fishman, M. C., Dawson, V. L., Dawson, T. M. and Snyder, S. H. (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase.Nature 378 383–386.

    CAS  PubMed  Google Scholar 

  • O’Dell, T. J., Huang, P. L., Dawson, T. M., Dinerman, J. L., Snyder, S. H., Kandel, E. R. and Fishman, M. C. (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS.Science 265 542–546.

    PubMed  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature 327 524–526.

    CAS  PubMed  Google Scholar 

  • Paschenko, S. V., Khramtsov, V. V., Skatchkov, M. P., Plysnin, V. F. and Bassenge, E. (1996) EPR and laser flash photolysis studies of the reaction of nitric oxide with water soluble NO trap Fe(II)-proline-dithiocarbamate complex.Biochem. Biophys. Res. Commun 225 577–584.

    CAS  PubMed  Google Scholar 

  • Pearce, L. L., Kanai, A. J., Birder, L. A., Pitt, B. R., Peterson, J. (2002) The catabolic fate of nitric oxide: the nitric oxide oxidase and peroxynitrite reductase activities of cytochrome oxidase.J. Biol. Chem 277 13556–13562.

    CAS  PubMed  Google Scholar 

  • Pham, E. K. and Chang, S.-G. (1994) Removal of NO from flue gases by absorption to an iron(II) thiochelate complex and subsequent reduction to ammonia.Nature 369 139–141.

    CAS  Google Scholar 

  • Pieper, G. M., Cooper, M., Johnson, C. P., Adams, M. B., Felix, C. C., Roza, A. M. (2000) Reduction of myocardial nitrosyl complex formation by a nitric oxide scavenger prolongs cardiac allograft survival.J. Cardiovasc. Pharmacol 35, 114–120.

    CAS  PubMed  Google Scholar 

  • Pino, R. Z. and Feelisch, M. (1994) Bioassay discrimination between nitric oxide (NO’) and nitroxyl (NO’) using L-cysteine.Biochem. Biophys. Res. Commun 201 54–62.

    CAS  PubMed  Google Scholar 

  • Quaresima, V., Takehara, H., Tsushima, K., Ferrari, M. and Utsumi, H. (1996)In vivo detection of mouse liver nitric oxide generation by spin trapping electron paramagnetic resonance spectroscopy.Biochem. Biophys. Res. Commun 221 729–734.

    CAS  PubMed  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide.J. Biol. Chem 266 4244–4250.

    CAS  PubMed  Google Scholar 

  • Radi, R. (1996) Kinetic analysis of the reactivity of peroxynitrite with biomolecules.Methods Enzymol 268 354–366.

    Google Scholar 

  • Radi, R., Denicola, A. and Freeman, B. A. (1999) Peroxynitrite reactions with carbon dioxide — bicarbonate.Methods Enzymol 301 353–367.

    CAS  PubMed  Google Scholar 

  • Radomski, M. W., Martin, J. F., Moncada, S. (1991) Synthesis of nitric oxide by the hemeocytes of the American horseshoe crab (Limulus polyphemus).Phil. Trans. R. Soc. London B 334 129–133.

    CAS  Google Scholar 

  • Rangel-Frausto, M. S., Pittet, D., Costigan, M., Hwang, T., Davis, C. S., Wenzel, R. P. (1995) The natural history of the systemic inflammatory response syndrome (SIRS): a prospective study.J. Amer. Med. Assn 273 117–123.

    CAS  Google Scholar 

  • Reeves, J. T. (1995) Brunton’s use of amyl nitrite in angina pectoris: an historic root of nitric oxide research.News Physiol. Sci 10 141–144.

    Google Scholar 

  • Reutov, V. P. and Sorokina, E. G. (1998) NO-synthase and nitrite-reductase components of nitric oxide cycle.Biochemistry (Moscow) 63 874–884.

    CAS  Google Scholar 

  • Rezvani, A. H., Grady, D. R., Peek, A. E. and Pucilowski, O. (1995) Inhibition of nitric oxide synthesis attenuates alcohol consumption in two strains of alcohol-preferring rats.Pharmacol. Biochem. Behay 50 265–270.

    CAS  Google Scholar 

  • Ribeiro, J. M. C., Hazzard, J. M. H., Nussenzveig, R. H., Champagne, D. E., Walker, F. A. (1993) Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect.Science 260 539–541.

    CAS  PubMed  Google Scholar 

  • Richter-Addo, G. B. and Legzdins P. (1992)Metal Nitrosyls Oxford Univ. Press, New York.

    Google Scholar 

  • Ringheim, G. E. and Pan, J. (1995) Particulate and soluble forms of the inducible nitric oxide synthase are distinguishable at the amino terminus in RAW 264.7 macrophage cells.Biochem. Biophys. Res. Commun 210 711–716.

    CAS  PubMed  Google Scholar 

  • Roy, B., Lepoivre, M., Henry, Y. and Fontecave, M. (1995) Inhibition of ribonucleotide reductase by nitric oxide derived from thionitrites: reversible modifications of both subunits.Biochem 34 5411–5418.

    CAS  Google Scholar 

  • Rubanyi, G. M., Greenberg, S. S., Wilcox, D. E. (1990) Endothelium-derived relaxing factor cannot be identified as free nitric oxide by electron paramagnetic resonance spectroscopy. InEndothelium-Derived Relaxing Factors (Rubanyi, G. M. and Vanhoutte, P. M., eds), pp 32–38, Karger, Basel.

    Google Scholar 

  • Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M. and Freeman, B. (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives.J. Biol. Chem 269 26066–26075.

    CAS  PubMed  Google Scholar 

  • Schmidt, H. H. H. W., Hofman, H., Schindler, U., Shutenko, Z. S., Cunningham, D. D., Feelisch, M. (1996) NO NO from NO synthase.Proc. Natl. Acad. Sci. USA 93 14492–14497.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sergent, O., Griffon, B., Morel, I., Chevanne, M., Dubos, M.-P., Cillard, P., Cillard, J. (1997) Effect of nitric oxide on iron-mediated oxidative stress in primary rat hepatocyte culture.Hepatol 25 122–127.

    CAS  Google Scholar 

  • Salerno, J. C., Frey, C., McMillan, K., Williams, R. F., Masters, B. S. S. and Griffith, O. W. (1995) Characterization by electron paramagnetic resonance of the interactions of Larginine and L-thiocitrulline with the heme cofactor region of nitric oxide synthase. J.Biol. Chem 270 27423–27428.

    CAS  PubMed  Google Scholar 

  • Salerno, J. C. (1996) Nitric oxide complexes of metalloproteins: an introductory overview. InNitric Oxide: Principles and Actions (Lancaster, J. Jr., ed) pp 83–110, Academic Press, San Diego, CA.

    Google Scholar 

  • Saprin, A. N. and Shulyakovskaya, T. S. (1969) On the appearance of a new type of EPR signal in animal tissue acted upon by several chemical agents and in necrosis.Dokl. Acad. Nauk SSSR (Rus.) 189 889–892.

    CAS  Google Scholar 

  • Sato, K., Akaike, T., Sawa, T., Miyamoto, Y., Suga, M., Ando, M., Maeda, H. (1997) Nitric oxide generation from hydroxyurea via copper-catalyzed peroxidation and implications for pharmacological actions of hydroxyurea.Jpn. J. Cancer Res 88 1199–1204.

    CAS  PubMed  Google Scholar 

  • Sato, S., Tominaga, T., Ohnishi, T. and Ohnishi, S. T. (1993) EPR spin-trapping study of nitric oxide formation during bilateral carotid occlusion in the rat.Biochim. Biophys. Acta 1181 195–197.

    CAS  PubMed  Google Scholar 

  • Schaffner, A., Blau, N., Schneemann, M., Steurer, J., Edgell, C.-J. S. and Schoedon, G. (1994) Tetrahydrobiopterin as another EDRF in man.Biochem. Biophys. Res. Commun 205 516–523.

    CAS  PubMed  Google Scholar 

  • Schreck, R., Meier, B., Männel, D. N., Dröge, W. and Baeuerle, P. A. (1992) Dithiocarbamates as potent inhibitors of nuclear factor xB activation in intact cells.J Exp. Med 175 1181–1194.

    CAS  PubMed  Google Scholar 

  • Sellers, V. M., Johnson, M. K. and Dailey, H. A. (1996) Function of the [2Fe-2S] cluster in mammalian ferrochelatase: a possible role as a nitric oxide sensor.Biochem 35, 2699–2704.

    CAS  Google Scholar 

  • Sen, S. and Cheema, I. R. (1995) Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue.Biochem. Arch 11 221–227.

    CAS  Google Scholar 

  • Sharpe, M. A., Cooper, C. E. (1998) Reactions of nitric oxide with mitochondrial cytochromec: a novel mechanism for the formation of nitroxyl anion and peroxynitrite.Biochem. J 332 9–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman, M. P., Aeberhard, E. E., Wong, V. Z., Griscavage, J. M. and Ignarro, L. J. (1993) Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages.Biochem. Biophys. Res. Commun 191 1301–1308.

    CAS  PubMed  Google Scholar 

  • Siddhanta, U., Presta, A., Fan, B., Wotan, D., Rousseau, D. L. and Stuehr, D. J. (1998) Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer.J. Biol. Chem 273 18950–18958.

    CAS  PubMed  Google Scholar 

  • Stamler, J. S., Jaraki, O., Osborne, J., Simon, D. I., Keany, J., Vita, J., Singel, D., Valeri, C. R. and Loscalzo, J. (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.Proc. Natl. Acad. Sci. USA 89 7674–7677.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamler, J. S. (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide.Cell 78 931–936.

    CAS  PubMed  Google Scholar 

  • St. Croix, C. M., Wasserloos, K. J., Dineley, K. E., Reynolds, I. J., Levitan, E. S., Pitt, B. R. (2002) Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein.Am. J Physiol 282 L185–L192.

    CAS  Google Scholar 

  • Stone, J. R., Sands, R. H., Dunham, W. R. and Marietta, M. A. (1995) Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase.Biochem. Biophys. Res. Commun 207 572–577.

    CAS  PubMed  Google Scholar 

  • Stubbe, J. and Riggs-Gelasco, P. (1998) Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase.Trends Biochem. Sci 23 438–443.

    CAS  PubMed  Google Scholar 

  • Subczynski, W. K., Lomnicka, M. and Hyde, J. S. (1996) Permeability of nitric oxide through lipid bilayer membranes.Free Rad. Res 24 343–349.

    CAS  Google Scholar 

  • Suzuki, Y., Fujii, S., Tominaga, T., Yoshimoto, T., Yoshimura, T., Kamada, H. (1997) The origin of an EPR signal observed in dithiocarbamate-loaded tissues. Copper(II)dithiocarbamate complexes account for the narrow hyperfine lines.Biochim. Biophys. Acta 1335 242–245.

    CAS  PubMed  Google Scholar 

  • Swartz, H. M., Molenda, R. P., Lofberg, R. T. (1965) Long-lived radiation-induced electron spin resonances in aqueous biological system.Biochem. Biophys. Res. Commun 21 61–65.

    CAS  PubMed  Google Scholar 

  • Thomas, G. and Ramwell, P. W. (1989) Vascular relaxation mediated by hydroxylamines and oximes: their conversion to nitrites and mechanism of endothelium dependent vascular relaxation.Biochem. Biophys. Res. Commun 164 889–893.

    CAS  PubMed  Google Scholar 

  • Thomas, L. (1974) InThe Lives of a Cell Viking Press, New York.

    Google Scholar 

  • Trimmer, B. A., Aprille, J. R., Dudzinski, D. M., Lagace, C. J., Lewis, S. M., Michel, T., Qazi, S., Zayas, R. M. (2001) Nitric oxide and the control of firefly flashing.Science 292 2486–2488.

    CAS  PubMed  Google Scholar 

  • Trujillo, M., Alvarez, M. N., Peluffo, G., Freeman, B. A. and Radi, R. (1998) Xanthine oxidase-mediated decomposition of S-nitrosothiols.J. Biol. Chem 273 7828–7834.

    CAS  PubMed  Google Scholar 

  • Tsuchiya, K., Jiang, J.-J., Yoshizumi, M., Tamaki, T., Houchi, H., Minakuchi, K., Fukuzawa, K., Mason, R. P. (1999) Nitric oxide-forming reactions of the water-soluble nitric oxide spin-trapping agent, MGD.Free Radic. Biol. Med 27 347–355.

    CAS  PubMed  Google Scholar 

  • Tsuchiya, K., Yoshizumi, M., Houchi, H., Mason, R.P. (2000) Nitric oxide-forming reaction between the iron-N-methyl-D-glucamine dithiocarbamate complex and nitrite.J. Biol. Chem 275 1551–1556.

    CAS  PubMed  Google Scholar 

  • Vanin, A. F. (1967) Identification of divalent iron complexes with cysteine in biological systems by the EPR method.Biokhimiya (Rus.) 32 228–232.

    Google Scholar 

  • Vanin, A. F. (1991) Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands.FEBSLett 289 1–3.

    CAS  Google Scholar 

  • Vanin, A. F. (1998) Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems.Biokhimiya (Rus.) 63 924–938.

    Google Scholar 

  • Vanin, A. F. (1999) Iron diethyldithiocarbamate as spin trap for nitric oxide detection.Methods Enzymol 301 269–279.

    CAS  PubMed  Google Scholar 

  • Vanin, A. F. and Kleschov, A. L. (1998) EPR detection and biological implications of nitrosyl nonheme iron complexes. InNitric Oxide in Transplant Rejection and Anti-tumor Defense (Lukiewicz, S. and Zweier. J. L., eds), pp 49–82, Kluwer, Boston.

    Google Scholar 

  • Vanin, A. F., Vakhnina, L. V., Chetverikov, A. G. (1970) Nature of the EPR signals of a new type found in a cancer tissues.Biofizika (Rus.) 15 1044–1051.

    CAS  Google Scholar 

  • Vanin, A. F., Men’shikov, G. V., Moroz, I. A., Mordvintcev, P. I., Serezhenkov, V. A., Burbaev, D. S. (1992) The source of non-heme iron that binds nitric oxide in cultivated macrophages.Biochim. Biophys. Acta 1135 275–279.

    CAS  PubMed  Google Scholar 

  • Vanin, A. F., Stukan, R. A., Manukhina, E. B. (1996) Physical properties of dinitrosyl iron complexes with thiol-containing ligands in relation with their vasodilator activity.Biochim. Biophys. Acta 1295 5–12.

    PubMed  Google Scholar 

  • Vanin, A. F., Malenkova, I. V. and Serezhenkov, V. A. (1997) Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies.Nitric Oxide: Biology and Chemistry I 191–203.

    Google Scholar 

  • Vanin, A. F., Serezhenkov, V. A., Mikoyan, V. D., Genkin, M. V. (1998) The 2.03 signal as an indicator of dinitrosyl-iron complexes with thiol-containing ligands.Nitric Oxide: Biology and Chemistry 2 224–234.

    CAS  Google Scholar 

  • Vanin, A. F., Liu, X., Samouilov, A., Stukan, R. A., Zweier, J. L. (2000) Redox properties of iron-dithiocarbamates and their nitrosyl derivatives: implications for their use as traps of nitric oxide in biological systems.Biochim. Biophys. Acta 1474 356–377.

    Google Scholar 

  • Vanin, A. F., Huisman, A., Stroes, E. S. G., de Ruijter-Heijstek, F. C., Rabelink, T. J., van Faassen, E. E. (2001) Antioxidant capacity of mononitrosyl-iron-dithiocarbamate complexes: implications for NO trapping.Free Radic. Biol. Med 30 813–824.

    CAS  PubMed  Google Scholar 

  • Vetrovsky, P., Stoclet, J.-C., Entlicher, G. (1996) Possible mechanism of nitric oxide production from NG-hydroxy-L-arginine or hydroxylamine by superoxide ion.Int. J. Biochem. Cell. Biol 28 1311–1318.

    CAS  PubMed  Google Scholar 

  • Vithayathil, A. J., Ternberg, J. L., Commoner, B. (1965) Changes in electron spin resonance signals of rat liver during chemical carcinogenesis.Nature 207 1246–1249.

    CAS  PubMed  Google Scholar 

  • Vincent, J. L. (1996) Definition and pathogenesis of septic shock.Curr Top. Microbiol.Immunol 216 1–13.

    CAS  Google Scholar 

  • Wei, X.-Q., Charles, I. G., Smith, A., Ure, J., Feng, G.-J., Huang, F.-P., Xu, D., Muller, W., Moncada, S. and Liew, F. Y. (1995) Altered immune responses in mice lacking inducible nitric oxide synthase.Nature, 375 408–411.

    CAS  PubMed  Google Scholar 

  • Weiss, G., Werner-Felmayer, G., Werner, E. R., Grünewald, K., Wachter, H. and Hentze, M. W. (1994) Iron regulates nitric oxide synthase activity by controlling nuclear transcription.J. Exp. Med., 180 969–976.

    CAS  PubMed  Google Scholar 

  • Wennmalm, A., Lanne, B. and Petersson, A.-S. (1990) Detection of endothelial-derived relaxing factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry.Anal. Biochem., 187 359–363.

    CAS  PubMed  Google Scholar 

  • Wennmalm, A., Benthin, G., Petersson, A.-S. (1992) Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin.Br. J. PharmacoL, 106 507–508.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wink, D. A., Grisham, M. B., Mitchell, J. B. and Ford, P. C. (1996) Direct and indirect effects of nitric oxide in chemical reactions relevant to biology.Methods Enzymol., 268 12–31.

    CAS  PubMed  Google Scholar 

  • Wink, D. A., Feelisch, M., Fukuto, M., Chistodoulou, D., Jourd’heuil, D., Grisham, M. B., Vodovotz, Y., Cook, J. A., Krishna, M., DeGraff, W. G., Kim, S.-M., Gamson, J., Mitchell, J. B. (1998) The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO.Arch. Biochem. Biophys., 351 66–74.

    CAS  PubMed  Google Scholar 

  • Woolum, J. C. and Commoner, B. (1968). Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats.Biochim. Biophys. Acta, 201 131–140.

    Google Scholar 

  • Yee, E. L., Pitt, B. R., Billiar, T. R. and Kim, Y.-M. (1996) Effect of nitric oxide on heme metabolism in pulmonary artery endothelial cells.Am. J. Physiol., 271 L512–L518.

    CAS  PubMed  Google Scholar 

  • Yoneyama, H., Kosaka, H., Ohnishi, T., Kawazoe, T., Mizoguchi, K., Ichikawa, Y. (1999) Reaction of neuronal nitric oxide synthase with the nitric oxide spin-trapping agent, iron complexed with N-dithiocarboxysarcosine.Eur. J. Biochem., 266,771–777.

    CAS  PubMed  Google Scholar 

  • Yoshimura, T., Fujii, S., Yokoyama, H. and Kamada, H. (1995)In vivo electron paramagnetic resonance imaging of NO-bound iron complex in a rat head.Chem. Lett 4, 309–310.

    Google Scholar 

  • Yoshimura, T., Yokoyama, H., Fujii, S., Takayama, F., Oikawa, K. and Kamada, H. (1996) In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice.Nature Biotec., 14 992–994.

    CAS  Google Scholar 

  • Zembowicz, A., Chlopicki, S., Radziszewski, W., Vane, J. R., Gryglewski, R. J. (1992) Nohydroxy-L-arginine and hydroxyguanidine potentiate the biological activity of endothelium-derived relaxing factor released from the rabbit aorta.Biochem. Biophys. Res. Commun., 189, 711–716.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Dawson, V. L., Dawson, T. M., Snyder, S. (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity.Nature, 263 687–689.

    CAS  Google Scholar 

  • Zweier, J. L., Wang, P., Samouilov, A., Kuppusamy, P. (1995a) Enzyme-independent formation of nitric oxide in biological tissues.Nature Med., I 804–809.

    Google Scholar 

  • Zweier, J., Wang, P., Kuppusamy, P. (1995b) Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy.J. Biol. Chem., 270 304–307.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komarov, A.M. (2003). Chemistry and Biology of Nitric Oxide. In: Berliner, L.J. (eds) In Vivo EPR (ESR). Biological Magnetic Resonance, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0061-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0061-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4906-8

  • Online ISBN: 978-1-4615-0061-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics