Skip to main content

Mitochondrial Genome and Susceptibility to Diabetes Mellitus

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 531))

Abstract

Diabetes mellitus (DM) is a complex polygenic disorder, characterized by a disturbance in insulin production by the pancreatic ß cell or in the ability of target tissues to respond to insulin. While this disorder is not normally regarded to be a disease of the tropics, several factors indeed suggest that it is an emerging health problem in fast-developing countries such as Indonesia. Adult-onset non-insulin-dependent or type 2 DM (NIDDM), in particular, clearly demonstrates the interplay between genetic and nutritional factors in the pathogenesis of the disorder. The progressive transition from a traditional to an industrial life-style, characteristic of fast-developing countries, is associated with an increasing prevalence of NIDDM. The very concept of thrifty gene(s) for energy metabolism (see Kagawa et al., 2002 for a recent review), proposed to save energy during famine but detrimental to an affluent life-style and thus predisposing to DM would predict a high prevalence of such gene(s) in the Southeast Asian archipelago, following the trail of ancient human migrations to the Pacific where the effect of the proposed thrifty gene(s) is most prominently seen (such as in the Nauruan population [Neel, 1999]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcolado, J.C., and Alcolado, R., 1991, Importance of maternal history of non-insulin dependent diabetic patients. Br. Med. J. 302 1178–1180.

    Article  CAS  Google Scholar 

  • Anderson, S., Bankier, A.T., Barrel], B.G., de Bruijn, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R., and Young, I.G., 1981, Sequence and organization of the human mitochondria] genome. Nature 290 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Attardi, G., Chomyn, A., and Mariottini, P., 1987, Function of the proteins encoded in human mitochondrial DNA. In Human Genetics F. Vogel and K. Sperling, eds., Springer-Verlag, Berlin, pp. 165–176.

    Chapter  Google Scholar 

  • Ballinger, S.W., Shoffner, J.M., Hedaya, E.V., Trounce, I., Polak, M.A., Koontz, D.A., and Wallace, D.C., 1992a, Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat. Genet. 1 11–15.

    Article  CAS  Google Scholar 

  • Ballinger, S.W., Schurr, T.G., Torroni, A., Gan, Y.Y., Hodge, J.A., Hassan, K., Chen, K.H., and Wallace, D.C., 1992b, Southeast Asia mitochondrial DNA analysis reveals genetic continuity of ancient mongoloid migrations. Genetics 130 139–152.

    CAS  Google Scholar 

  • Bendall, K., and Sykes, B., 1995, Length heteroplasmy in the first hypervariable segment of the human mitochondria] DNA control region. Am. J. Hum. Genet. 57 248–256.

    PubMed  CAS  Google Scholar 

  • Börner, G.V., Zeviani, M., Tiranti, V., Carrara, F., Hoffmann, S., Gerbitz, K.D., Lochmüller, H., Pongratz, D., Klopstock, T., Melberg, A., Holme, E., and Pääbo, S., 2000, Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum. Mol. Genet. 9 467–475.

    Article  PubMed  Google Scholar 

  • Casteels, K., Ong, K., Philips, D., Bendall, H., Pembrey, M., the ALSPAC study team, Poulton, J., and Dunger, D., 1999, Mitochondria) 16189 variant, maternal restraint of fetal growth and impaired glucose tolerance in type 2 diabetes. Lancet 353 1499–1500.

    Article  PubMed  CAS  Google Scholar 

  • Chomyn, A., Enriquez, J.A., Micol, V., Fernandez-Silva, P., and Attardi, G., 2000, The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J. Biol. Chem. 275 19198–19209.

    Article  PubMed  CAS  Google Scholar 

  • Choo-Kang, A.T., Lynn, S., Taylor, G.A., Daly, M.E., Sihota, S.S., Wardell, T.M., Chinnery, P.F., Turnbull, D.M., and Walker, M., 2002, Defining the importance of mitochondrial gene defects in maternally inherited diabetes by sequencing the entire mitochondrial genome. Diabetes 51 2317–2320.

    Article  PubMed  CAS  Google Scholar 

  • Damore, M.E., Speiser, P.W., Slonim, A.E., New, M.I., Shanske, S., Xia, W., Santorelli, F.M., and Di Mauro, S., 1999, Early onset of diabetes mellitus associated with the mitochondrial DNA T14709C point mutation: patient report and literature review. J. Pediatr. Endocrinol. Metab. 12 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Dukes, I.D., McIntryre, M.S., Mertz, R.J., Philipson, L.H., Roe, M.W., Spenser, B., and Worley III, J.F., 1994, Dependence on NADH produced during glycolysis for beta-cell signalling. J. Biol. Chem. 269 10979–10982.

    PubMed  CAS  Google Scholar 

  • Gerbitz, K., van den Ouweland, J., Maasen, J.A., and Kasch, M., 1995. Mitochondrial diabetes mellitus: a review. Biochem. Biophys. Acta 1271 253–260.

    Article  PubMed  Google Scholar 

  • Gerbitz, K., Gempel, K., and Brdiczka, D., 1996, Mitochondria and diabetes. Genetic, biochemical, and clinical implication of the cellular energy circuit. Diabetes 46 113–126.

    Google Scholar 

  • Gidh-Jain, M., Takeda, J., Xu, L.Z., Lange, A.J., Vionnet, N., Stoffel, M., Froguel, P., Velho, G., Sun, F., Cohen, D., et al.,1993, Glucokinase mutations associated with non-insulindependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc. Natl. Acad. Sci. USA 90 1932-1936.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., Nonaka, I., and Horai, S., 1991, AnewmtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochem. Biophys. Acta 1097 238-240.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., 1995, Clinical features of MELAS and mitochondrial DNA mutations. Muscle Nerve 3: S107-112.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, M., Suzuki, S., Onoda, M., Hinokio, Y., Ai, L., Hirai, A., Ohtomo, M., Komatsu, K., Kasuga, S., Satoh, Y., Akai, H., and Toyota, T., 1996, Mitochondrial DNA 3394 mutation in the NADH dehydrogenase subunit I associated with non-insulin-dependent diabetes mellitus. Biochem. Biophys. Res. Commun. 27 951-955.

    Article  Google Scholar 

  • Hsieh, R.H., Li, J.Y., Pang, C.Y., and Wei, Y.H., 2001, A novel mutation in the mitochondrial 16S rRNA gene in a patient with MELAS syndrome, diabetes mellitus, hyperthyroidism and cardiomyopathy. J. Biomed. Sci. 8 328-335

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, K., Parsons, T.J., Yoshino, M., and Holland, M.M., 2002, A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals. lnt. J. Legal. Med. 116 68-73.

    Article  CAS  Google Scholar 

  • Jean-Francois, M.J.B., Lertrit, P., Berkovic, S.F., Crimmins, D., Morris, J., Marzuki, S. and Byrne, E., 1994, Heterogeneity in the phenotypic expression of the mutation in the mitochondrial tRNA leu (UUR) gene generally associated with the MELAS subset of mitochondrial encephalomyopathies. Aust. NZ. J. Med. 24 188-193.

    Article  CAS  Google Scholar 

  • Kadowaki, T., Kadowaki, H., Mori, Y., Tobe, K., Sakuta, R., Suzuki, Y., Tanabe, Y., Sakura, H., Awata, T., Goto, Y, et al., 1994, A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N. Engl. J. Med. 330 962-968.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa, Y., Yanagisawa, Y., Hasegawa, K., Suzuki, H., Yasuda, K., Kudo, H., Abe, M., Matsuda, S., Ishikawa, Y., Tsuchiya, N., Sato, A., Umetsu, K., and Kagawa, Y., 2002, Single nucleotide polymorphisms of thrifty genes for energy metabolism: evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem. Biophys. Res. Commun. 295 207-222.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, C.R., Vicent, D., and Doria, A., 1996, Genetics of non-insulin-dependent (type II) diabetes mellitus. Annu. Rev. Med. 47 509-531.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.H., Park, K.S., Cho, Y.M., Kang, B.S., Kim, S.K., Joen, H.J., Kim, S.Y., and Lee, H.K., 2002, The prevalence of the mitochondrial DNA 16189 variant in non diabetic Korean adults and its association with higher fasting glucose and body mass index. Diabet. Med. 19 681-684.

    Article  PubMed  CAS  Google Scholar 

  • Klemm, T., Neumann, S., Trutzsch, B., Pistrosch, F., Hanefeld, M., and Paschke, R., 2001, Search for mitochondrial DNA mutation at position 3243 in German patients with a positive family history of maternal diabetes mellitus. Exp. Clin. Endocrino!. Diabetes 109 283-287.

    Article  CAS  Google Scholar 

  • Krittiyawong, S., Ongphiphadhanakul, B., Chanprasertyothin, S., Reutrakol, S., Bunnog, P., Rojatanavin, R., and Puavilai, G., 2000, Diabetes mellitus in young Thai adults. J. Med. Assoc. Thai. 83 1283-1288.

    PubMed  CAS  Google Scholar 

  • Manouvrier, S., Rotig, A., Hannebique, G., Gheerbrandt, J.D., Reyer-Legrain, G., Munnich, A., Parent, M., Grunfeld, J.P., Largilliere, C., and Lombes, A., 1995, Point mutation of the mitochondrial tRNA (leu) gene (A3243G) in maternally inherited hypertrophie cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. J. Med. Genet. 32 654-656.

    Article  PubMed  CAS  Google Scholar 

  • Marchington, D.R., Poulton, J., Sellar, A., and Holt, I.J., 1996, Do sequence variants in the major non-coding region of the mitochondrial genome influence mitochondrial mutations associated with disease? Hum. Mol. Genet. 5 473-479.

    Article  PubMed  CAS  Google Scholar 

  • Malik, S., Sudoyo, H., Pramoonjago, P., Sukama, T., Darwis, D., and Marzuki, S., 2002a, Evidence for the de novo regeneration of the pattern of the length heteroplasmy associated with the T16189C variant in the control (D-loop) region of mitochondrial DNA. J. Hum. Genet. 47 122-130.

    Article  CAS  Google Scholar 

  • Malik, S., Sudoyo, H., Pramoonjago, P., Suryadi, H., Sukarna, T., Nyunting, M., Sahiratmadja, E., and Marzuki, S., 2002b, Nuclear mitochondrial interplay in the modulation of the homopolymeric tract length heteroplasmy in the control (D-loop) region of the mitochondria] DNA. Hum. Genet. 110 402-411.

    Article  CAS  Google Scholar 

  • Malik, S., Sudoyo, H., Sasmono, T., Winata, S., Arhya, I.N., Pramoonjago, P., Sudana, W., and Marzuki, S., 2002c, Non-syndromic sensorineural deafness in a Balinese family associated with the A1555G mutation in the mitochondrial small subunit ribosomal RNA. J. Hum. Genet., 2003

    Google Scholar 

  • Matschinsky, F.M., 1996, Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45 223-241.

    Google Scholar 

  • Neel, J.V., 1999, The thrifty genotype in 1998. Nutr. Rev. 57 S2-S7.

    Google Scholar 

  • Ng, M.C., Yeung, V.T., Chow, C.C., Li, J.K., Smith, P.R., Mijovic, C.H., Critchley, J.A., Barnett, A.H., Cockram, C.S., and Chan, J.C., 2000, Mitochondrial DNA A3243G mutation in patients with early-or late-onset type 2 diabetes mellitus in Hongkong Chinese. Clin. Endocrinol. 52 557-564.

    Article  CAS  Google Scholar 

  • Odawara, M., Sasaki, K., and Yamashita, K., 1996a, A G to A substitution at nucleotide position 3316 in mitochondria] DNA is associated with Japanese non-insulin-dependent diabetes mellitus. Biochem. Biophys. Res. Commun. 227 147-151.

    Article  CAS  Google Scholar 

  • Odawara, M., 1996b, Involvement of mitochondrial gene abnormalities in the pathogenesis of diabetes mellitus. Ann. N.Y. Acad. Sci. 786 72-81.

    Article  CAS  Google Scholar 

  • Otabe, S., Yasuda, K., Mori, Y., Shimokawa, K., Kadowaki, H., Jimi, A., Nonaka, K., Akanuma, Y., Yazaki, Y., and Kadowaki, T., 1999, Molecular and histological evaluation of pancreata from patients with a mitochondrial gene mutation associated with impaired insulin secretion. Biochem. Biophys. Res. Commun. 259 149-156.

    Article  PubMed  CAS  Google Scholar 

  • Poulton, J., Scott Brown, M., Cooper, A., Marchington, D.R., and Phillips, D.I.W., 1998a, A common mitochondrial DNA variant is associated with insulin resistance in adult life. Diabetologia 41 54-58.

    Article  CAS  Google Scholar 

  • Poulton, J., Marchington, D., Brown, M.S., Phillips, D., and Hagelberg, E., 1998b, Does a common mitochondrial DNA polymorphism underlie susceptibility to diabetes and the thrifty genotype? Trends Genet. 14 385-387.

    Article  Google Scholar 

  • Poulton, J., Luan, J., Macaulay, V., Hennings, S., Mitchell, J., and Wareham, N.J., 2002, Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum. Mol. Genet. 11 1581-1583.

    Article  PubMed  CAS  Google Scholar 

  • Reardon, W., Ross, R.J.M., Sweeney, M.G., Luxon, L.M., Pembrey, M.E., Harding, A.E., and Trembath, R.C., 1992, Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet 340 1376-1379.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J.B., Klockgether, T., Dichgans, J., Seibel, P., and Reichmann, H., 1993, Mitochondrial gene mutations and diabetes mellitus. Lancet 341 438-439.

    PubMed  CAS  Google Scholar 

  • Smith, P.R., Dronsfield, M.J., Mijovic, C.H., Hattersley, A.T., Yeung, V.T., Cockram, C., Chan, C.J., Barnett, A.H., and Brain, S.C., 1997, The mitochondrial tRNA [Leu (UUR)] A to G 3243 mutation is associated with insulin-dependent and non-insulin-dependent diabetes in a Chinese population. Diabet. Med. 14 1026-1031.

    Article  PubMed  CAS  Google Scholar 

  • Soejima, A., Inoue, K., Takai, D., Kaneko, M., Ishihara, H., Oka, Y., and Hayashi, J., 1996, Mitochondrial DNA is required for regulation of glucose-stimulated insulin secretion in a mouse pancreatic beta cell line, MIN 6. J. Biol. Chem. 271 26194-26199.

    Article  PubMed  CAS  Google Scholar 

  • Sudoyo, H., Suryadi, H., Lertrit, P., Pramoonjago, P., Lyrawati, D., and Marzuki, S., 2002, Asian-specific mtDNA backgrounds associated with the primary G11778A mutation of Leber's hereditary optic neuropathy. J. Hum. Genet, in press.

    Google Scholar 

  • Thomas AW, Edwards A, Sherratt EJ, Majid A, Gagg J, and Alcolado JC. 1996. Molecular scanning of candidate mitochondrial tRNA genes in type 2 (non-insulin dependent) diabetes mellitus. JMed Genet. 33 253-255.

    Article  CAS  Google Scholar 

  • Torroni, A., Petrozzi, M., D’Urbano, L., Sellito, D., Zeviani, M., Carrara, F., Carducci, C., Leuzzi, V., Carelli, V., Barboni, P., De Negri, A., and Scozzari, R., 1997, Haplotype and phylogenetic analysis suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutation 11778 and 14484. Am. J. Hum. Genet. 60 1107-1121

    PubMed  CAS  Google Scholar 

  • Velho, G., Byrne, M.M., Clement, K., Sturis, J., Pueyo, M.E., Blanche, H., Vionnet, N., Fiet, J., Passa, P., Robert, J.J., Polansky, K.S., and Froguel, P., 1996, Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondria] tRNAleu(UUR) gene mutation. Diabetes 45 478-487.

    Article  PubMed  CAS  Google Scholar 

  • Van den Ouweland, J.M., Lemkes, H.H., Ruitenbeek, W., Sandkuijl, L.A., de Vijlder, M.F., Struyvenberg, P.A., van den Kamp, J.J., and Maassen, J.A., 1992, Mutation in mitochondrial tRNAleu gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat. Genet. 1 368-371.

    Article  PubMed  Google Scholar 

  • Van den Ouweland, J.M., Lemke, H.H., Trembath, R.C., Ross, R., Velho, G., Cohen, D., Froguel, P., and Maassen, J.A., 1994, Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu(UUR)) gene. Diabetes 43: 746-751.

    Article  PubMed  Google Scholar 

  • Wallace, D.C., Brown, M.D. and Lott, M.T., 1999, Mitochondrial DNA variation in human evolution and diseases. Gene 238 211-230.

    Article  PubMed  CAS  Google Scholar 

  • Yki-Jarvinen, H., 1997, MODY genes and mutations in hepatocyte nuclear factors. Lancet 349 516-517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sudoyo, H., Suryadi, H., Sitorus, N., Soegondo, S., Pranoto, A., Marzuki, S. (2003). Mitochondrial Genome and Susceptibility to Diabetes Mellitus. In: Marzuki, S., Verhoef, J., Snippe, H. (eds) Tropical Diseases. Advances in Experimental Medicine and Biology, vol 531. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0059-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0059-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4905-1

  • Online ISBN: 978-1-4615-0059-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics