Skip to main content

Endocannabinoid-Mediated Modulation of Excitatory and Inhibitory Synaptic Transmission

  • Chapter
Excitatory-Inhibitory Balance

Abstract

Marijuana exerts variable behavioral effects through the interaction of its active component Δ9-tetrahydrocannabinol with specific cannabinoid receptors. Accumulated evidence suggests that endogenous cannabinoids function as diffusible and short-lived intercellular messengers that modulate synaptic transmission. Recent studies have provided strong experimental evidence that endogenous cannabinoids (endocannabinoids) are released from postsynaptic neurons following depolarization-induced elevation of intracellular Ca2+ concentration ([Ca2+]i), activation of group I metabotropic glutamate receptors (mGluRs) or activation of muscarinic acetylcholine receptors (mAChRs). The released endocannabinoids mediate signals retrogradely from postsynaptic neurons to presynaptic terminals to suppress subsequent neurotransmitter release, driving the synapse into an altered state. In this chapter, we review recent studies. including ours and propose a possible scheme for the mechanisms of the endocannabinoid-mediated retrograde signaling. We will also discuss about possible physiological significance of this signaling on excitatory-inhibitory balance of the neural circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egertova, M., and Elphick, M. R., (2000) Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 422: 159–171.

    Article  PubMed  CAS  Google Scholar 

  2. Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C., (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11: 563–583.

    PubMed  CAS  Google Scholar 

  3. Matsuda, L. A., Bonner, T. I., and Lolait, S. J., (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327: 535–550.

    Article  PubMed  CAS  Google Scholar 

  4. Tsou, K., Brown, S., Sanudo-Pena, M. C., Mackie, K., and Walker, J. M., (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83: 393–411.

    Article  PubMed  CAS  Google Scholar 

  5. Felder, C. C., and Glass, M., (1998) Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol 38: 179–200.

    Article  PubMed  CAS  Google Scholar 

  6. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T. I., (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346: 561–564.

    Article  PubMed  CAS  Google Scholar 

  7. Munro, S., Thomas, K. L., and Abu-Shaar, M., (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365: 61–65.

    Article  PubMed  CAS  Google Scholar 

  8. Klein, T. W., Newton, C., and Friedman, H., (1998) Cannabinoid receptors and immunity. Immunol Today 19:373–381.

    Article  PubMed  CAS  Google Scholar 

  9. Katona, I., Sperlagh, B., Sik, A., Kafalvi, A., Vizi, E. S., Mackie, K., and Freund, T. F., (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19: 4544–4558.

    PubMed  CAS  Google Scholar 

  10. Tsou, K., Mackie, K., Sanudo-Pena, M. C., and Walker, J. M., (1999) Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93: 969–975.

    Article  PubMed  CAS  Google Scholar 

  11. Hajos, N., and Freund, T. F., (2002) Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology 43: 503–510.

    Article  PubMed  CAS  Google Scholar 

  12. Hajos, N., Ledent, C., and Freund, T. F., (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 106: 1–4.

    Article  PubMed  CAS  Google Scholar 

  13. Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R., (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949.

    Article  PubMed  CAS  Google Scholar 

  14. Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., and et al., (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50: 83–90.

    Article  PubMed  CAS  Google Scholar 

  15. Sugiura, T., Kodaka, T., Nakane, S., Miyashita, T., Kondo, S., Suhara, Y., Takayama, H., Waku, K., Seki, C., Baba, N., and Ishima, Y., (1999) Evidence that the cannabinoid CB1 receptor is a 2- arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem 274: 2794–2801.

    Article  PubMed  CAS  Google Scholar 

  16. Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., and Waku, K., (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215: 89–97.

    Article  PubMed  CAS  Google Scholar 

  17. Bisogno, T., Berrendero, F., Ambrosino, G., Cebeira, M., Ramos, J. A., Fernandez-Ruiz, J. J., and Di Marzo, V., (1999a) Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun 256: 377–380.

    Article  PubMed  CAS  Google Scholar 

  18. Bisogno, T., Melck, D., De Petrocellis, L., and Di Marzo, V., (1999b) Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J Neurochem 72: 2113–2119.

    Article  PubMed  CAS  Google Scholar 

  19. Cadas, H., Gaillet, S., Beltramo, M., Venance, L., and Piomelli, D., (1996) Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J Neurosci 16: 3934–3942.

    PubMed  CAS  Google Scholar 

  20. Di Marzo, V., Melck, D., Bisogno, T., and De Petrocellis, L., (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 21: 521–528.

    Article  PubMed  Google Scholar 

  21. Piomelli, D., Giuffrida, A., Calignano, A., and Rodriguez de Fonseca, F., (2000) The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci 21:218–224.

    Article  PubMed  CAS  Google Scholar 

  22. Stella, N., Schweitzer, P., and Piomelli, D., (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388: 773–778.

    Article  PubMed  CAS  Google Scholar 

  23. Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A., and Gilula, N. B., (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384: 83–87.

    Article  PubMed  CAS  Google Scholar 

  24. Goparaju, S. K., Ueda, N., Yamaguchi, H., and Yamamoto, S., (1998) Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett 422: 69–73.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas, E. A., Cravatt, B. F., Danielson, P. E., Gilula, N. B., and Sutcliffe, J. G., (1997), Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J Neurosci Res 50: 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  26. Egertova, M., Giang, D. K., Cravatt, B. F., and Elphick, M. R., (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc R Soc Lond B Biol Sci 265: 2081–2085.

    Article  CAS  Google Scholar 

  27. Howlett, A. C., and Fleming, R. M., (1984) Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes. Mol Pharmacol 26: 532–538.

    PubMed  CAS  Google Scholar 

  28. Felder, C. C., Joyce, K. E., Briley, E. M., Mansouri, J., Mackie, K., Blond, O., Lai, Y., Ma, A. L., and Mitchell, R. L., (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48: 443–450.

    PubMed  CAS  Google Scholar 

  29. Mackie, K., and Hille, B., (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A 89: 3825–3829.

    Article  PubMed  CAS  Google Scholar 

  30. Mackie, K., Lai, Y., Westenbroek, R., and Mitchell, R., (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15: 6552–6561.

    PubMed  CAS  Google Scholar 

  31. Twitchell, W., Brown, S., and Mackie, K., (1997) Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 78: 43–50.

    PubMed  CAS  Google Scholar 

  32. Gifford, A. N., and Ashby, C. R., Jr., (1996) Electrically evoked acetylcholine release from hippocampal slices is inhibited by the cannabinoid receptor agonist, WIN 55212-2, and is potentiated by the cannabinoid antagonist, SR 141716A. J Pharmacol Exp Ther 277:1431–1436.

    PubMed  CAS  Google Scholar 

  33. Hoffman, A. F., and Lupica, C. R., (2000) Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci 20: 2470–2479.

    PubMed  CAS  Google Scholar 

  34. Ishac, E. J., Jiang, L., Lake, K. D., Varga, K., Abood, M. E., and Kunos, G., (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118: 2023–2028.

    Article  PubMed  CAS  Google Scholar 

  35. Shen, M., Piser, T. M., Seybold, V. S., and Thayer, S. A., (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 16: 4322–4334.

    PubMed  CAS  Google Scholar 

  36. Ohno-Shosaku, T., Sawada, S., and Yamamoto, C., (1998) Properties of depolarization-induced suppression of inhibitory transmission in cultured rat hippocampal neurons. Pflugers Arch 435: 273–279.

    Article  PubMed  CAS  Google Scholar 

  37. Pitler, T. A., and Alger, B. E., (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12: 4122–4132.

    PubMed  CAS  Google Scholar 

  38. Llano, I., Leresche, N., and Marty, A., (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6: 565–574.

    Article  PubMed  CAS  Google Scholar 

  39. Lenz, R. A., Wagner, J. J., and Alger, B. E., (1998) N- and L-type calcium channel involvement in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J Physiol 512 ( Pt 1): 61–73.

    Article  PubMed  CAS  Google Scholar 

  40. Ohno-Shosaku, T., Maejima, T., and Kano, M., (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29: 729–738.

    Article  PubMed  CAS  Google Scholar 

  41. Vincent, P., and Marty, A., (1993) Neighboring cerebellar Purkinje cells communicate via retrograde inhibition of common presynaptic interneurons. Neuron 11: 885–893.

    Article  PubMed  CAS  Google Scholar 

  42. Wilson, R. I., and Nicoll, R. A., (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410: 588–592.

    Article  PubMed  CAS  Google Scholar 

  43. Zucker, R. S., and Regehr, W. G., (2002) Short-term synaptic plasticity. Annu Rev Physiol 64: 355–405.

    Article  PubMed  CAS  Google Scholar 

  44. Diana, M. A., Levenes, C., Mackie, K., and Marty, A., (2002) Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J Neurosci 22: 200–208.

    PubMed  CAS  Google Scholar 

  45. Kreitzer, A. C., and Regehr, W. G., (2001a) Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21: RC174.

    PubMed  CAS  Google Scholar 

  46. Yoshida, T., Hashimoto, K., Zimmer, A., Maejima, T., Araishi, K., and Kano, M., (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci 22: 1690–1697.

    PubMed  CAS  Google Scholar 

  47. Wallmichrath, I., and Szabo, B., (2002) Cannabinoids inhibit striatonigral GABAergic neurotransmission in the mouse. Neuroscience 113: 671–682.

    Article  PubMed  CAS  Google Scholar 

  48. Kreitzer, A. C., and Regehr, W. G., (2001b) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29: 717–727.

    Article  PubMed  CAS  Google Scholar 

  49. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A., and Kano, M., (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31: 463–475.

    Article  PubMed  CAS  Google Scholar 

  50. Ohno-Shosaku, T., Tsubokawa, H., Mizushima, I., Yoneda, N., Zimmer, A., and Kano, M., (2002b) Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. J Neurosci 22: 3864–3872.

    PubMed  CAS  Google Scholar 

  51. Ohno-Shosaku, T., Shosaku, J., Tsubokawa, H., and Kano, M., (2002a) Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. Eur J Neurosci 15: 953–961.

    Article  PubMed  Google Scholar 

  52. Varma, N., Carlson, G. C., Ledent, C., and Alger, B. E., (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21: RC188.

    PubMed  CAS  Google Scholar 

  53. Kim, J., Isokawa, M., Ledent, C., and Alger, B. E., (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci 22: 10182–10191.

    PubMed  CAS  Google Scholar 

  54. Carlson, G., Wang, Y., and Alger, B. E., (2002) Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci 5: 723–724.

    PubMed  CAS  Google Scholar 

  55. Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C, (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87: 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  56. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S., (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267: 13361–13368.

    PubMed  CAS  Google Scholar 

  57. Shigemoto, R., Kinoshita, A., Wada, E., Nomura, S., Ohishi, H., Takada, M., Flor, P. J., Neki, A., Abe, T., Nakanishi, S., and Mizuno, N., (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17: 7503–7522.

    PubMed  CAS  Google Scholar 

  58. Shigemoto, R., Nakanishi, S., and Mizuno, N., (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluRl) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322: 121–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kano, M., Ohno-Shosaku, T., Maejima, T., Yoshida, T. (2003). Endocannabinoid-Mediated Modulation of Excitatory and Inhibitory Synaptic Transmission. In: Hensch, T.K., Fagiolini, M. (eds) Excitatory-Inhibitory Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0039-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0039-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4895-5

  • Online ISBN: 978-1-4615-0039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics