Skip to main content

Dynamism of Postsynaptic Proteins as the Mechanism of Synaptic Plasticity

  • Chapter
Excitatory-Inhibitory Balance
  • 233 Accesses

Abstract

At excitatory synapses of the vertebrate central nervous system, the neuronal information is transmitted via glutamate which is released from presynaptic terminals and opens postsynaptic cation channels integrated in glutamate receptor proteins. This transmission is not static, but rather is dynamically regulated in both a positive and negative manner by its own activity level as well as by interactions with other synaptic inputs. Such regulation is collectively called synaptic plasticity. After the discovery of synaptic plasticity, intensive work over the past three decades has shown that excitatory synapses in the central nervous system exhibit a remarkable degree of plasticity. Most importantly, growing evidence suggests that synaptic plasticity is the molecular/cellular basis of learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. V. Bliss and T. Lømo (1970) Plasticity in a monosynaptic cortical pathway, J Physiol (Lond), 207, 61P.

    CAS  Google Scholar 

  2. M. Hollmann and S. Heinemann (1994) Cloned glutamate receptors, Annu Rev Neurosci, 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  3. R. Dingledine, K. Borges, D. Bowie and S. F. Traynelis (1999) The glutamate receptor ion channels, Pharmacol Rev, 51, 7–61.

    PubMed  CAS  Google Scholar 

  4. T. V. Bliss and G. L. Collingridge (1993) A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  5. J. Lisman, H. Schulman and H. Cline (2002) The molecular basis of CaMKII function in synaptic and behavioural memory, Nat Rev Neurosci, 3, 175–190.

    Article  PubMed  CAS  Google Scholar 

  6. K. Fukunaga, D. Muller and E. Miyamoto (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation, J Biol Chem, 270, 6119–6124.

    Article  PubMed  CAS  Google Scholar 

  7. R. C. Malenka, J. A. Kauer, D. J. Perkel, M. D. Mauk, P. T. Kelly, R. A. Nicoll and M. N. Waxham (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation, Nature, 340, 554–557.

    Article  PubMed  CAS  Google Scholar 

  8. R. Malinow, H. Schulman and R. W. Tsien (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science, 245, 862–866.

    Article  PubMed  CAS  Google Scholar 

  9. A. J. Silva, C. F. Stevens, S. Tonegawa and Y. Wang (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice, Science, 257, 201–206.

    Article  PubMed  CAS  Google Scholar 

  10. D. L. Pettit, S. Perlman and R. Malinow (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons, Science, 266, 1881–1885

    Article  PubMed  CAS  Google Scholar 

  11. P. M. Lledo, G. O. Hjelmstad, S. Mukherji, T. R. Soderling, R. C. Malenka and R. A. Nicoll (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism, Proc Natl Acad Sci USA, 92, 11175–11179.

    Article  PubMed  CAS  Google Scholar 

  12. K. P. Giese, N. B. Fedorov, R. K. Filipkowski and A. J. Silva (1998) Autophosphorylation at Thr286 of the α-calcium-calmodulin kinase II in LTP and learning, Science, 279, 870–873.

    Article  PubMed  CAS  Google Scholar 

  13. D. M. Kullmann, G. Erdemli and F. Asztely (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over, Neuron, 17, 461–474.

    Article  PubMed  CAS  Google Scholar 

  14. S. N. Davies, R. A. Lester, K. G. Reymann and G. L. Collingridge (1989) Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation, Nature, 338, 500–503.

    Article  PubMed  CAS  Google Scholar 

  15. J. J. Renger, C. Egles and G. Liu (2001) A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation, Neuron, 29, 469–484.

    Article  PubMed  CAS  Google Scholar 

  16. D. Muller and G. Lynch (1989) Evidence that changes in presynaptic calcium currents are not responsible for long-term potentiation in hippocampus, Brain Res, 479, 290–299.

    Article  PubMed  CAS  Google Scholar 

  17. T. Manabe, D. J. Wyllie, D. J. Perkel and R. A. Nicoll (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus, J Neurophysiol, 70, 1451–1459.

    PubMed  CAS  Google Scholar 

  18. F. Asztely, M. Y. Xiao and B. Gustafsson (1996) Long-term potentiation and paired-pulse facilitation in the hippocampal CA1 region, Neuroreport, 7, 1609–1612.

    Article  PubMed  CAS  Google Scholar 

  19. T. Maeda, S. Kaneko, A. Akaike and M. Satoh (1997) Direct evidence for increase in excitatory amino acids release during mossy fiber LTP in rat hippocampal slices as revealed by the patch sensor methods, Neurosci Lett, 224, 103–106.

    Article  PubMed  CAS  Google Scholar 

  20. J. S. Diamond, D. E. Bergles and C. E. Jahr (1998) Glutamate release monitored with astrocyte transporter currents during LTP, Neuron, 21, 425–433.

    Article  PubMed  CAS  Google Scholar 

  21. C. Lüscher, R. C. Malenka and R. A. Nicoll (1998) Monitoring glutamate release during LTP with glial transporter currents, Neuron, 21, 435–441.

    Article  PubMed  Google Scholar 

  22. T. Manabe and R. A. Nicoll (1994) Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus, Science, 265, 1888–1892.

    Article  PubMed  CAS  Google Scholar 

  23. Z. F. Mainen, Z. Jia, J. Roder and R. Malinow (1998) Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression, Nat Neurosci, 1, 579–586.

    Article  PubMed  CAS  Google Scholar 

  24. R. Malinow, Z. F. Mainen and Y. Hayashi (2000) LTP mechanisms: from silence to four-lane traffic, Curr Opin Neurobiol, 10, 352–357.

    Article  PubMed  CAS  Google Scholar 

  25. J. T. Isaac, R. A. Nicoll and R. C. Malenka (1995) Evidence for silent synapses: implications for the expression of LTP, Neuron, 15,427–434.

    Article  PubMed  CAS  Google Scholar 

  26. D. Liao, N. A. Hessler and R. Malinow (1995) Activation of postsynaptically silent synapses during ing-induced LTP in CA1 region of hippocampal slice, Nature, 375,400–404.

    Article  PubMed  CAS  Google Scholar 

  27. G. M. Durand, Y. Kovalchuk and A. Konnerth (1996) Long-term potentiation and functional synapse induction in developing hippocampus, Nature, 381, 71–75.

    Article  PubMed  CAS  Google Scholar 

  28. S. N. Gomperts, A. Rao, A. M. Craig, R. C. Malenka and R. A. Nicoll (1998) Postsynaptically silent synapses in single neuron cultures, Neuron, 21, 1443–1451.

    Article  PubMed  CAS  Google Scholar 

  29. Z. Nusser, R. Lujan, G. Laube, J. D. Roberts, E. Molnar and P. Somogyi (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus, Neuron, 21, 545–559.

    Article  PubMed  CAS  Google Scholar 

  30. D. Liao, X. Zhang, R. O’Brien, M. D. Ehlers and R. L. Huganir (1999) Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons, Nat Neurosci, 2, 37–43.

    Article  PubMed  CAS  Google Scholar 

  31. R. S. Petralia, J. A. Esteban, Y. X. Wang, J. G. Partridge, H. M. Zhao, R. J. Wenthold and R. Malinow (1999) Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses, Nat Neurosci, 2, 31–36.

    Article  PubMed  CAS  Google Scholar 

  32. Y. Takumi, V. Ramirez-Leon, P. Laake, E. Rinvik and O. P. Ottersen (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses, Nat Neurosci, 2,618–624.

    Google Scholar 

  33. S. Maren, G. Tocco, S. Standley, M. Baudry and R. F. Thompson (1993) Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo, Proc Natl Acad Sci USA, 90, 9654–9658.

    Article  PubMed  CAS  Google Scholar 

  34. P. M. Lledo, X. Zhang, T. C. Sudhof, R. C. Malenka and R. A. Nicoll (1998) Postsynaptic membrane fusion and long-term potentiation, Science, 279, 399–403.

    Article  PubMed  CAS  Google Scholar 

  35. M. Maletic-Savatic, T. Koothan and R. Malinow (1998) Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II, J Neurosci, 18, 6814–6821.

    PubMed  CAS  Google Scholar 

  36. M. Maletic-Savatic and R. Malinow (1998) Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part I: trans-Golgi network-derived organelles undergo regulated exocytosis, J Neurosci, 18, 6803–6813.

    PubMed  CAS  Google Scholar 

  37. S. H. Shi, Y. Hayashi, R. Petralia, S. Zaman, R. Wenthold, K. Svoboda and R. Malinow (1999) Rapid Spine Delivery and Redistribution of AMPA Receptors after Synaptic NMDA Receptor Activation, Science, 284, 1811–1816.

    Article  PubMed  CAS  Google Scholar 

  38. A. Piccini and R. Malinow (2002) Critical postsynaptic density 95/disc large/zonula occludens-1 interactions by glutamate receptor 1 (GluRl) and GluR2 required at different subcellular sites, J Neurosci, 22, 5387–5392.

    PubMed  CAS  Google Scholar 

  39. Y. Hayashi, S. H. Shi, J. A. Esteban, A. Piccini, J. C. Poncer and R. Malinow (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluRl and PDZ domain interaction, Science, 287, 2262–2267.

    Article  PubMed  CAS  Google Scholar 

  40. T. Takahashi, K. Svoboda and R. Malinow (2002) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299, 1585–1588.

    Article  Google Scholar 

  41. D. Zamanillo, R. Sprengel, O. Hvalby, V. Jensen, N. Burnashev, A. Rozov, K. M. Kaiser, H. J. Koster, T. Borchardt, P. Worley, J. Lubke, M. Frotscher, P. H. Kelly, B. Sommer, P. Andersen, P. H. Seeburg and B. Sakmann (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning, Science, 284, 1805–1811.

    Article  PubMed  CAS  Google Scholar 

  42. V. Mack, N. Burnashev, K. M. Kaiser, A. Rozov, V. Jensen, O. Hvalby, P. H. Seeburg, B. Sakmann and R. Sprengel (2001) Conditional restoration of hippocampal synaptic potentiation in GluR-A-deficient mice, Science, 292, 2501–2504.

    Article  PubMed  CAS  Google Scholar 

  43. K. W. Roche, R. J. O’Brien, A. L. Mammen, J. Bernhardt and R. L. Huganir (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluRl subunit, Neuron, 16, 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  44. H.-K. Lee, K. Takamiya, K. Kameyama, S. Yu, L. Rossetti C. He, D. Wilen and R. L. Huganir (2002) Identification and characterization of a novel phosphorylation site on the GluRl subunit of AMPA receptors. US Soc. Neurosci. Abstr.

    Google Scholar 

  45. A. Barria, D. Muller, V. Derkach, L. C. Griffith and T. R. Soderling (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation, Science, 276, 2042–2045.

    Google Scholar 

  46. A. L. Mammen, K. Kameyama, K. W. Roche and R. L. Huganir (1997) Phosphorylation of the a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluRl subunit by calcium/calmodulin-dependent kinase II, J Biol Chem, 272, 32528–32533.

    Article  PubMed  CAS  Google Scholar 

  47. V. Derkach, A. Barria and T. R. Soderling (1999) Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors, Proc Natl Acad Sci U S A, 96, 3269–3274.

    Article  PubMed  CAS  Google Scholar 

  48. H. K. Lee, M. Barbarosie, K. Kameyama, M. F. Bear and R. L. Huganir (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity, Nature, 405, 955–959.

    Article  PubMed  CAS  Google Scholar 

  49. T. A. Benke, A. Luthi, J. T. Isaac and G. L. Collingridge (1998) Modulation of AMPA receptor unitary conductance by synaptic activity, Nature, 393, 793–797.

    Article  PubMed  CAS  Google Scholar 

  50. J. A. Esteban, S. H. Shi, C. Wilson, M. Nuriya, R. L. Huganir and R. Malinow (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity, Nat Neurosci, 6,136–143.

    Article  PubMed  CAS  Google Scholar 

  51. R. D. Blitzer, J. H. Connor, G. P. Brown, T. Wong, S. Shenolikar, R. Iyengar and E. M. Landau (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP, Science, 280, 1940–1942.

    Article  PubMed  CAS  Google Scholar 

  52. M. J. Thomas, T. D. Moody, M. Makhinson and T. J. O’Dell (1996) Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region, Neuron, 17, 475–482.

    Article  PubMed  CAS  Google Scholar 

  53. H. K. Lee, K. Takamiya, J. S. Han, H. Man, C. H. Kim, G. Rumbaugh, S. Yu, L. Ding, C. He, R. S. Petralia, R. J. Wenthold, M. Gallagher and R. L. Huganir (2003) Phosphorylation of the AMPA Receptor GluRl Subunit Is Required for Synaptic Plasticity and Retention of Spatial Memory, Cell, 112, 631–643.

    Article  PubMed  CAS  Google Scholar 

  54. Y. Yoshimura, C. Aoi and T. Yamauchi (2000) Investigation of protein substrates of Ca2+/calmodulin-dependent protein kinase II translocated to the postsynaptic density, Brain Res Mol Brain Res, 81, 118–128.

    Article  PubMed  CAS  Google Scholar 

  55. Y. Yoshimura, T. Shinkawa, M. Taoka, K. Kobayashi, T. Isobe and T. Yamauchi (2002) Identification of protein substrates of Ca2+/calmodulin-dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry, Biochem Biophys Res Commun, 290, 948–954.

    Article  PubMed  CAS  Google Scholar 

  56. H. J. Chen, M. Rojas-Soto, A. Oguni and M. B. Kennedy (1998) A synaptic Ras-GTPase activating protein (pl35 SynGAP) inhibited by CaM kinase II, Neuron, 20, 895–904.

    Article  PubMed  CAS  Google Scholar 

  57. J. H. Kim, D. Liao, L. F. Lau and R. L. Huganir (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family, Neuron, 20, 683–691.

    Article  PubMed  CAS  Google Scholar 

  58. J. J. Zhu, Y. Qin, M. Zhao, L. Van Aelst and R. Malinow (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity, Cell, 110, 443–455.

    Google Scholar 

  59. H. C. Kornau, L. T. Schenker, M. B. Kennedy and P. H. Seeburg (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95, Science, 269, 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  60. A. E. El-Husseini, E. Schnell, D. M. Chetkovich, R. A. Nicoll and D. S. Bredt (2000) PSD-95 involvement in maturation of excitatory synapses, Science, 290,1364–1368.

    PubMed  CAS  Google Scholar 

  61. I. D. Ehrlich and R. Malinow (2002) PSD-95 mimics, occludes and dominant negative forms block LTP in hippocampal slice cultures. US Soc. Neurosc. Abstr.

    Google Scholar 

  62. E. Schnell, M. Sizemore, S. Karimzadegan, L. Chen, D. S. Bredt and R. A. Nicoll (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number, Proc Natl Acad Sci U S A, 99, 13902–13907.

    Article  PubMed  CAS  Google Scholar 

  63. L. Chen, D. M. Chetkovich, R. S. Petralia, N. T. Sweeney, Y. Kawasaki, R. J. Wenthold, D. S. Bredt and R. A. Nicoll (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms, Nature, 408,936–943.

    Article  PubMed  CAS  Google Scholar 

  64. D. M. Chetkovich, L. Chen, T. J. Stocker, R. A. Nicoll and D. S. Bredt (2002) Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors, J Neurosci, 22, 5791–5796.

    PubMed  CAS  Google Scholar 

  65. A. Yoshii, M. H. Sheng and M. Constantine-Paton (2003) Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons, Proc Natl Acad Sci U S A, 100, 1334–1339.

    Article  PubMed  CAS  Google Scholar 

  66. Y. H. Koh, E. Popova, U. Thomas, L. C. Griffith and V. Budnik (1999) Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation, Cell, 98, 353–363.

    Google Scholar 

  67. M. Passafaro, V. Piech and M. Sheng (2001) Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons, Nat Neurosci, 4, 917–926.

    Google Scholar 

  68. A. S. Leonard, M. A. Davare, M. C. Horne, C. C. Garner and J. W. Hell (1998) SAP97 is associated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluRl subunit, J Biol Chem, 273, 19518–19524.

    Article  PubMed  CAS  Google Scholar 

  69. C.-H. Kim, K. Takamiya, R. Sattler, R. S. Petralia, S. Yu, L. Ding, R. Wenthold and R. Huganir (2002) Role of the AMPA receptor GluRl subunit carboxyl-terminal PDZ ligand in synaptic plasticity and receptor distribution. Neuroscience Meeting.

    Google Scholar 

  70. I. Song, S. Kamboj, J. Xia, H. Dong, D. Liao and R. L. Huganir (1998) Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors, Neuron, 21, 393–400.

    Article  PubMed  CAS  Google Scholar 

  71. P. Osten, S. Srivastava, G. J. Inman, F. S. Vilim, L. Khatri, L. M. Lee, B. A. States, S. Einheber, T. A. Milner, P. I. Hanson and E. B. Ziff (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and α- and β-SNAPs, Neuron, 21, 99–110.

    Article  PubMed  CAS  Google Scholar 

  72. A. Nishimune, J. T. Isaac, E. Molnar, J. Noel, S. R. Nash, M. Tagaya, G. L. Collingridge, S. Nakanishi and J. M. Henley (1998) NSF binding to GluR2 regulates synaptic transmission, Neuron, 21, 87–97.

    Article  PubMed  CAS  Google Scholar 

  73. J. Noel, G. S. Ralph, L. Pickard, J. Williams, E. Molnar, J. B. Uney, G. L. Collingridge and J. M. Henley (1999) Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism, Neuron, 23, 365–376.

    Article  PubMed  CAS  Google Scholar 

  74. S. H. Lee, L. Liu, Y. T. Wang and M. Sheng (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD, Neuron, 36, 661–674.

    Article  PubMed  CAS  Google Scholar 

  75. R. Malinow and R. C. Malenka (2002) AMPA receptor trafficking and synaptic plasticity, Annu Rev Neurosci, 25, 103–126.

    Article  PubMed  CAS  Google Scholar 

  76. S. Shi, Y. Hayashi, J. A. Esteban and R. Malinow (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons, Cell, 105, 331–343.

    Article  PubMed  CAS  Google Scholar 

  77. R. J. Wenthold, R. S. Petralia, J. Blahos, II and A. S. Niedzielski (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons, J Neurosci, 16, 1982–1989.

    PubMed  CAS  Google Scholar 

  78. J. J. Zhu, J. A. Esteban, Y. Hayashi and R. Malinow (2000) Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity, Nat Neurosci, 3, 1098–1106.

    Article  PubMed  CAS  Google Scholar 

  79. A. Kolleker, B. J. Schupp, V. Mack, G. Köhr, P. H. Seeburg and P. Osten (2002) GluR-Blong AMPA receptor subunit mediates spontaneous activity-driven receptor insertion in young principal neurons. Neuroscience Meeting, Orland.

    Google Scholar 

  80. H. Yasuda, A. L. Barth, D. Stellwagen and R. C. Malenka (2003) A developmental switch in the signaling cascades for LTP induction, Nat Neurosci, 6,15–16.

    Article  PubMed  CAS  Google Scholar 

  81. A. M. Craig (1998) Activity and synaptic receptor targeting: the long view, Neuron, 21, 459–462.

    Article  PubMed  CAS  Google Scholar 

  82. D. R. Grosshans, D. A. Clayton, S. J. Coultrap and M. D. Browning (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1, Nat Neurosci, 5, 27–33.

    Article  PubMed  CAS  Google Scholar 

  83. P. Washbourne, J. E. Bennett and A. K. McAllister (2002) Rapid recruitment of NMDA receptor transport packets to nascent synapses, Nat Neurosci, 5, 751–759.

    PubMed  CAS  Google Scholar 

  84. E. M. Snyder, B. D. Philpot, K. M. Huber, X. Dong, J. R. Fallon and M. F. Bear (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation, Nat Neurosci, 4, 1079–1085.

    Article  PubMed  CAS  Google Scholar 

  85. L. Y. Wang, E. M. Dudek, M. D. Browning and J. F. MacDonald (1994) Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C, J Physiol, 475, 431–437.

    PubMed  CAS  Google Scholar 

  86. D. N. Lieberman and I. Mody (1994) Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase, Nature, 369, 235–239.

    Google Scholar 

  87. J. Y. Lan, V. A. Skeberdis, T. Jover, S. Y. Grooms, Y. Lin, R. C. Araneda, X. Zheng, M. V. Bennett and R. S. Zukin (2001) Protein kinase C modulates NMDA receptor trafficking and gating, Nat Neurosci, 4, 382–390.

    Google Scholar 

  88. M. D. Ehlers, W. G. Tingley and R. L. Huganir (1995) Regulated subcellular distribution of the NR1 subunit of the NMDA receptor, Science, 269, 1734–1737.

    Article  PubMed  CAS  Google Scholar 

  89. D. K. Fong, A. Rao, F. T. Crump and A. M. Craig (2002) Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II, J Neurosci, 22, 2153–2164.

    PubMed  CAS  Google Scholar 

  90. W. G. Tingley, M. D. Ehlers, K. Kameyama, C. Doherty, J. B. Ptak, C. T. Riley and R. L. Huganir (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies, J Biol Chem, 272, 5157–5166.

    Article  PubMed  CAS  Google Scholar 

  91. A. S. Leonard and J. W. Hell (1997) Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites, J Biol Chem, 272, 12107–12115.

    Article  PubMed  CAS  Google Scholar 

  92. D. B. Scott, T. A. Blanpied, G. T. Swanson, C. Zhang and M. D. Ehlers (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing, J Neurosci, 21, 3063–3072.

    PubMed  CAS  Google Scholar 

  93. S. Standley, K. W. Roche, J. McCallum, N. Sans and R. J. Wenthold (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants, Neuron, 28, 887–898.

    Article  PubMed  CAS  Google Scholar 

  94. X. Zheng, L. Zhang, A. P. Wang, M. V. Bennett and R. S. Zukin (1999) Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits, Proc Natl Acad Sci U S A, 96, 15262–15267.

    Article  PubMed  CAS  Google Scholar 

  95. T. Suzuki, K. Okumura-Noji, R. Tanaka and T. Tada (1994) Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation, J Neurochem, 63, 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  96. S. Strack, S. Choi, D. M. Lovinger and R. J. Colbran (1997) Translocation of autophosphorylated calcium/calmodul in-dependent protein kinase II to the postsynaptic density, J Biol Chem, 272, 13467–13470.

    Article  PubMed  CAS  Google Scholar 

  97. K. Shen, M. N. Teruel, J. H. Connor, S. Shenolikar and T. Meyer (2000) Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II, Nat Neurosci, 3,881–886.

    Article  PubMed  CAS  Google Scholar 

  98. K. Shen, M. N. Teruel, K. Subramanian and T. Meyer (1998) CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines, Neuron, 21, 593–606.

    Article  PubMed  CAS  Google Scholar 

  99. M. R. Gleason, S. Higashijima, J. Dallman, K. Liu, G. Mandel and J. R. Fetcho (2003) Translocation of CaM kinase II to synaptic sites in vivo, Nat Neurosci, 6, 217–218.

    Article  PubMed  CAS  Google Scholar 

  100. S. Strack and R. J. Colbran (1998) Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor, J Biol Chem, 273, 20689–20692.

    Article  PubMed  CAS  Google Scholar 

  101. A. S. Leonard, I. A. Lim, D. E. Hemsworth, M. C. Horne and J. W. Hell (1999) Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor, Proc Natl Acad Sci U S A, 96, 3239–3244.

    Google Scholar 

  102. K. U. Bayer, P. De Koninck, A. S. Leonard, J. W. Hell and H. Schulman (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation, Nature, 411, 801–805.

    Google Scholar 

  103. R. S. Walikonis, A. Oguni, E. M. Khorosheva, C. J. Jeng, F. J. Asuncion and M. B. Kennedy (2001) Den-sin-180 forms a ternary complex with the a-subunit of Ca2+/calmodulin-dependent protein kinase II and α-actinin, J Neurosci, 21, 423–433.

    PubMed  CAS  Google Scholar 

  104. S. Strack, A. J. Robison, M. A. Bass and R. J. Colbran (2000) Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180, J Biol Chem, 275, 25061–25064.

    Article  PubMed  CAS  Google Scholar 

  105. S. Okabe, T. Urushido, D. Konno, H. Okado and K. Sobue (2001) Rapid redistribution of the postsynaptic density protein PSD-Zip45 (Homer lc) and its differential regulation by NMDA receptors and calcium channels, J Neurosci, 21, 9561–9571.

    PubMed  CAS  Google Scholar 

  106. E. N. Star, D. J. Kwiatkowski and V. N. Murthy (2002) Rapid turnover of actin in dendritic spines and its regulation by activity, Nat Neurosci, 5, 239–246.

    Google Scholar 

  107. D. El-Husseini Ael, E. Schnell, S. Dakoji, N. Sweeney, Q. Zhou, O. Prange, C. Gauthier-Campbell, A. Aguilera-Moreno, R. A. Nicoll and D. S. Bredt (2002) Synaptic strength regulated by palmitate cycling on PSD-95, Cell, 108, 849–863.

    Google Scholar 

  108. C. H. Kim and J. E. Lisman (1999) A role of actin filament in synaptic transmission and long-term potentiation, J Neurosci, 19, 4314–4324.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Futai, K., Hayashi, Y. (2003). Dynamism of Postsynaptic Proteins as the Mechanism of Synaptic Plasticity. In: Hensch, T.K., Fagiolini, M. (eds) Excitatory-Inhibitory Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0039-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0039-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4895-5

  • Online ISBN: 978-1-4615-0039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics