The Organization and Integrative Function of the Post-Synaptic Proteome

  • S. G. N. Grant
  • H. Husi
  • J. Choudhary
  • M. Cumiskey
  • W. Blackstock
  • J. D. Armstrong


The postsynaptic terminal is an example of signal transduction specialisation par excellence. Signaling is essentially found at two levels; at the level of transmitting electrical activity between nerve cells and converting electrical activity into molecular signals via intracellular signal transduction. A wealth of information on the molecular composition and electophysiological properties of the post synaptic terminal has raised new and crucial questions for the neurobiology of nerve cells and behaviour.


NMDA Receptor Synaptic Plasticity Metabotropic Glutamate Receptor Neural Cell Adhesion Molecule Post Synaptic Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sherrington, C. S. (1906) The integrative action of the nervous system (C. Scribner’s sons, New York).Google Scholar
  2. 2.
    Adrian, E.D. (1928) The basis of sensation, the action of the sense organs (W. W. Norton & company inc.,New York).Google Scholar
  3. 3.
    Hebb, D. O. (1949) The organization of behavior; a neuropsychological theory (Wiley, New York).Google Scholar
  4. 4.
    Grant, S. G. et al. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice [see comments]. Science 258, 1903–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Sanes, J. R. & Lichtman, J. W. (1999) Can molecules explain long-term potentiation? Nat Neurosci 2, 597–604.PubMedCrossRefGoogle Scholar
  6. 6.
    Opazo, P., Watabe, A. M., Grant, S. G. & O’Dell, T. J. (2003) Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms. J Neurosci 23, 3679–88.PubMedGoogle Scholar
  7. 7.
    Migaud, M. et al. (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein [see comments]. Nature 396, 433–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Komiyama, N. H. et al. (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22, 9721–32.PubMedGoogle Scholar
  9. 9.
    Watabe, A. M., Zaki, P. A. & O’Dell, T. J. (2000) Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20, 5924–31.PubMedGoogle Scholar
  10. 10.
    Yasuda, H., Barth, A. L., Stellwagen, D. & Malenka, R. C. (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6, 15–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes [see comments]. Nat Neurosci 3, 661–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Husi, H. & Grant, S. G. (2001) Isolation of 2000-kDa complexes of N-methyl-D-aspartate receptor and postsynaptic density 95 from mouse brain. J Neurochem 77, 281–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamauchi, T. (2002) Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density. Mass Spectrom Rev 21, 266–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Walikonis, R. S. et al. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20, 4069–80.PubMedGoogle Scholar
  15. 15.
    Waterston, R. H. et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Fromont-Racine, M., Rain, J. C. & Legrain, P. (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16, 277–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwikowski, B., Uetz, P. & Fields, S. (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18, 1257–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Tucker, C. L., Gera, J. F. & Uetz, P. (2001) Towards an understanding of complex protein networks. Trends Cell Biol 11, 102–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Ideker, T. et al. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Gavin, A. C. et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Buchanan, M. (2002) Nexus : small worlds and the groundbreaking science of networks (W.W. Norton, New York).Google Scholar
  23. 23.
    Barabasi, A.-L. (2002) Linked : the new science of networks (Perseus Pub., Cambridge, MA,).Google Scholar
  24. 24.
    Bollobâas, B. (1985) Random graphs (Academic Press, London ; Orlando).Google Scholar
  25. 25.
    Barabasi, A. L. & Albert, R. (1999) Emergence of scaling in random networks. Science 286, 509–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) The large-scale organization of metabolic networks. Nature 407, 651–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (2000) Principles of neural science (McGraw-Hill Health Professions Division, New York).Google Scholar
  29. 29.
    Irie, M. et al. (1997) Binding of neuroligins to PSD-95. Science 277, 1511–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Garcia, R. A., Vasudevan, K. & Buonanno, A. (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 91, 3596–601.CrossRefGoogle Scholar
  31. 31.
    Sun, Y., Savanenin, A., Reddy, P. H. & Liu, Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276, 24713–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Jamain, S. et al. (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34, 27–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Stefansson, H. et al. (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71, 877–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Ho, L. W. et al. (2001) The molecular biology of Huntington’s disease. Psychol Med 31, 3–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Husi, H. & Grant, S. G. (2002) in Neuroscience Databases: A practical Guide 51–62 (Kluwer Academic Publishers, Boston/Dordrecht/London).Google Scholar
  36. 1.
    Tsien, J.Z., Huerta, P.T. and Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87(7), 1327–1338.PubMedCrossRefGoogle Scholar
  37. 2.
    Cammarota, M., et al. (2000) Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochem Res 25(5), 567–572.PubMedCrossRefGoogle Scholar
  38. 3.
    Collingridge, G.L., Kehl, S.J. and McLennan, H. (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334, 33–46.PubMedGoogle Scholar
  39. 4.
    Morris, R.G., et al. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056), 774–776.PubMedCrossRefGoogle Scholar
  40. 5.
    Fanselow, M.S., et al. (1994) Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues. Behav Neurosci 108(2), 235–240.PubMedCrossRefGoogle Scholar
  41. 6.
    Bauer, E.P., Schafe G.E., and LeDoux, J.E. (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22(12), 5239–5249.PubMedGoogle Scholar
  42. 7.
    Gould, T.J., McCarthy, M.M. and Keith, R.A. (2002) MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 13(4), 287–294.PubMedCrossRefGoogle Scholar
  43. 8.
    Lu, Y. and Wehner, J.M. (1997) Enhancement of contextual fear-conditioning by putative (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators and N-methyl-D-aspartate (NMDA) receptor antagonists in DBA/2J mice. Brain Res 768(1–2), 197–207.PubMedCrossRefGoogle Scholar
  44. 9.
    Davis, M., et al. (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58(1–2), 175–98.PubMedCrossRefGoogle Scholar
  45. 10.
    Miyamoto, Y., et al. (2002) Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit J Neurosci 22(6), 2335–2342.PubMedGoogle Scholar
  46. 11.
    Mohn, A.R., et al. (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98(4), 427– 436.PubMedCrossRefGoogle Scholar
  47. 12.
    Rondi-Reig, L., et al. (2001) CA1-specific N-methyl-D-aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proc Natl Acad Sci U S A 98(6), 3543–3548.PubMedCrossRefGoogle Scholar
  48. 13.
    Dracheva, S., et al. (2001) N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 158(9), 1400–1410.PubMedCrossRefGoogle Scholar
  49. 14.
    Akbarian, S., et al. (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16(1), 19–30.PubMedGoogle Scholar
  50. 15.
    Gao, X.M., et al. (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157(7), 1141–1149.PubMedCrossRefGoogle Scholar
  51. 16.
    Sakimura, K., et al. (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373(6510),. 151–155.PubMedCrossRefGoogle Scholar
  52. 17.
    Sprengel, R., et al. (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92(2): p. 279–289.PubMedCrossRefGoogle Scholar
  53. 18.
    Kiyama, Y., et al. (1998) Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon 1 subunit. J Neurosci 18(17), 6704–6712.PubMedGoogle Scholar
  54. 19.
    Moriya, T., et al. (2000) Close linkage between calcium/calmodulin kinase II alpha/beta and NMDA-2A receptors in the lateral amygdala and significance for retrieval of auditory fear conditioning. Eur J Neurosci 12(9), 3307–3314.PubMedCrossRefGoogle Scholar
  55. 20.
    Kishimoto, Y., et al. (1997) Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport 8(17), 3717–3721.PubMedCrossRefGoogle Scholar
  56. 21.
    Doyle, K.M., et al. (1998) Comparison of various N-methyl-D-aspartate receptor antagonists in a model of short-term memory and on overt behaviour. Behav Pharmacol 9(8), 671–681.PubMedCrossRefGoogle Scholar
  57. 22.
    Khan, A.M., et al. (1999) Lateral hypothalamic NMDA receptor subunits NR2A and/or NR2B mediate eating: immunochemical/behavioral evidence. Am J Physiol 27 6(3 Pt 2), R880–891.PubMedGoogle Scholar
  58. 23.
    Tang, Y.P., et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401(6748), 63–69.PubMedCrossRefGoogle Scholar
  59. 24.
    Clayton, D.A., et al. (2002) A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci 22(9), 3628–3637.PubMedGoogle Scholar
  60. 25.
    Wong, R.W., et al. (2002) Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci U S A 99(22), 14500–14505.PubMedCrossRefGoogle Scholar
  61. 26.
    Tang, Y.P., et al. (2001) Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41(6), 779–790.PubMedCrossRefGoogle Scholar
  62. 27.
    Rodrigues, S.M., Schafe, G.E. and LeDoux, J.E. (2001) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci 21(17), 6889–6896.PubMedGoogle Scholar
  63. 28.
    Grimwood, S., et al. (1999) NR2B-containing NMDA receptors are up-regulated in temporal cortex in schizophrenia. Neuroreport 10(3), 461–465.PubMedCrossRefGoogle Scholar
  64. 29.
    Liu, J., et al. (1999) Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation. J Neurosci 19(19), 8292–8299.PubMedGoogle Scholar
  65. 30.
    Fukunaga, K., et al. (2000) Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. J Neurochem 74(2), 807–817.PubMedCrossRefGoogle Scholar
  66. 31.
    Malenka, R.C., et al. (1989) An essential role for postsynapric calmodulin and protein kinase activity in long-term potentiation. Nature 340(6234), 554–557.PubMedCrossRefGoogle Scholar
  67. 32.
    Menendez, L., Hidalgo, A. and Baamonde, A. (1997) Spinal calmodulin inhibitors reduce N-methyl-D-aspartate- and septide-induced nociceptive behavior. Eur J Pharmacol 335(1), 9–14.PubMedCrossRefGoogle Scholar
  68. 33.
    Alvarez-Vega, M., et al. (1998) Comparison of the effects of calmidazolium, morphine and bupivacaine on N-methyl-D-aspartate-and septide-induced nociceptive behaviour. Naunyn Schmiedebergs Arch Pharmacol 358(6), 628–634.PubMedCrossRefGoogle Scholar
  69. 34.
    Alvarez-Vega, M., et al. (2000) Intrathecal N-methyl-D-aspartate (NMDA) induces paradoxical analgesia in the tail-flick test in rats. Pharmacol Biochem Behav 65(4), 621–625.PubMedCrossRefGoogle Scholar
  70. 35.
    Tomimatsu, Y., et al. (2002) Proteases involved in long-term potentiation. Life Sci 72(4–5), 355–361.PubMedCrossRefGoogle Scholar
  71. 36.
    Massicotte, G., et al. (1991) Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation? Proc Natl Acad Sci U S A 88(5), 1893–1897.PubMedCrossRefGoogle Scholar
  72. 37.
    Silva, A.J., et al. (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067), 201–206.PubMedCrossRefGoogle Scholar
  73. 38.
    Hinds, H.L., Tonegawa, S. and Malinow, R. (1998) CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Learn Mem 5(4–5), 344–354.PubMedGoogle Scholar
  74. 39.
    Malinow, R., Madison, D.V. and Tsien, R.W. (1988) Persistent protein kinase activity underlying long-term potentiation. Nature 335(6193), 820–824.PubMedCrossRefGoogle Scholar
  75. 40.
    Silva, A.J., et al. (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067), 206–211.PubMedCrossRefGoogle Scholar
  76. 41.
    Szapiro, G., et al. (2003) The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13(1), 53–58.PubMedCrossRefGoogle Scholar
  77. 42.
    Chen, C., et al. (1994) Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science 266(5183), 291–294.PubMedCrossRefGoogle Scholar
  78. 43.
    Xing, G., et al. (2002) Decreased prefrontal CaMKII alpha mRNA in bipolar illness. Neuroreport 13(4), 501–505.PubMedCrossRefGoogle Scholar
  79. 44.
    Migaud, M., et al. (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynapric density-95 protein. Nature 396(6710), 433–439.PubMedCrossRefGoogle Scholar
  80. 45.
    Skibinska, A., Lech, M. and Kossut, M. (2001) PSD95 protein level rises in murine somatosensory cortex after sensory training. Neuroreport 12(13), 2907–2910.PubMedCrossRefGoogle Scholar
  81. 46.
    Tao, F., et al. (2001) Knockdown of PSD-95/SAP90 delays the development of neuropathic pain in rats. Neuroreport 12(15), 3251–3255.PubMedCrossRefGoogle Scholar
  82. 47.
    Garry, E.M., et al. (2003) Neuropathic Sensitization of Behavioral Reflexes and Spinal NMDA Receptor/CaM Kinase II Interactions Are Disrupted in PSD-95 Mutant Mice. Curr Biol 13(4), 321–328.PubMedCrossRefGoogle Scholar
  83. 48.
    Ohnuma, T., et al. (2000) Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. Neuroreport 11(14), 3133–3137.PubMedCrossRefGoogle Scholar
  84. 49.
    Ranta, S., et al. (2000) Positional cloning and characterisation of the human DLGAP2 gene and its exclusion in progressive epilepsy with mental retardation. Eur J Hum Genet 8(5), 381–384.PubMedCrossRefGoogle Scholar
  85. 50.
    Tavalin, S.J., et al. (2002) Regulation of GluRl by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 22(8), 3044–3051.PubMedGoogle Scholar
  86. 51.
    Toyooka, K., et al. (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 83(4), 797–806.PubMedCrossRefGoogle Scholar
  87. 52.
    Roberts, L.A., et al. (1996) Changes in hippocampal gene expression associated with the induction of long-term potentiation. Brain Res Mol Brain Res 42(1), 123–127.PubMedCrossRefGoogle Scholar
  88. 53.
    Grant, S.G., et al, (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258(5090), 1903–1910.PubMedCrossRefGoogle Scholar
  89. 54.
    Korte, M., et al. (2000) She-binding site in the TrkB receptor is not required for hippocampal long-term potentiation. Neuropharmacology 39(5), 717–724.PubMedCrossRefGoogle Scholar
  90. 55.
    Salter, M.W. (1998) Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem Pharmacol 56(7), 789–798.PubMedCrossRefGoogle Scholar
  91. 56.
    Zhao, W., et al. (2000) Nonreceptor tyrosine protein kinase pp60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions. Proc Natl Acad Sci U S A 97(14), 8098–8103.PubMedCrossRefGoogle Scholar
  92. 57.
    Nishihara, E., et al. (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci 23(1), 213–222.PubMedGoogle Scholar
  93. 58.
    Uetani, N., et al. (2000) Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. Embo J 19(12), 2775–2785.PubMedCrossRefGoogle Scholar
  94. 59.
    Tartaglia, M., et al. (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4), 465–468.PubMedCrossRefGoogle Scholar
  95. 60.
    Contractor, A., Swanson, G. and Heinemann, S.F. (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29(1), 209–216.PubMedCrossRefGoogle Scholar
  96. 61.
    Porter, R.H., Eastwood, S.L. and Harrison, P.J. (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia Brain Res 751(2), 217–231.PubMedCrossRefGoogle Scholar
  97. 62.
    Komiyama, N.H., et al. (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22(22), 9721–9732.PubMedGoogle Scholar
  98. 63.
    Kim, J.H., et al. (2003) The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23(4), 1119–1124.PubMedGoogle Scholar
  99. 64.
    Huang, Y., et al. (2001) CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29(2), 485–496.PubMedCrossRefGoogle Scholar
  100. 65.
    Lauri, S.E., Taira, T. and Rauvala, H. (2000) High-frequency synaptic stimulation induces association of fyn and c-src to distinct phosphorylated components. Neuroreport 11(5), 997–1000.PubMedCrossRefGoogle Scholar
  101. 66.
    Yamagata, K., et al. (1994) rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269(23), 16333–16339.PubMedGoogle Scholar
  102. 67.
    Geist, R.T., et al. (1996) Expression of the tuberous sclerosis 2 gene product, tuberin, in adult and developing nervous system tissues. Neurobiol Dis 3(2), 111–20.PubMedCrossRefGoogle Scholar
  103. 68.
    Castillo, P.E., et al. (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388(6642), 590–3.PubMedCrossRefGoogle Scholar
  104. 69.
    Lonart, G., et al. (1998) Mechanism of action of rab3A in mossy fiber LTP. Neuron 21(5), 1141–1150.PubMedCrossRefGoogle Scholar
  105. 70.
    D’Adamo, P. et al. (1998) Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet 19(2), 134–139.PubMedCrossRefGoogle Scholar
  106. 71.
    Lynch, M.A., et al. (1994) Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyrus. Neuroscience 60(1), 1–5.PubMedCrossRefGoogle Scholar
  107. 72.
    Ferguson, G.D. et al. (2000) Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proc Natl Acad Sci USA 97(10), 5598–5603.PubMedCrossRefGoogle Scholar
  108. 73.
    Rodger, J., et al. (1998) Induction of long-term potentiation in vivo regulates alternate splicing to alter syntaxin 3 isoform expression in rat dentate gyrus. J Neurochem 71(2), 666–675.PubMedCrossRefGoogle Scholar
  109. 74.
    Helme-Guizon, A., et al. (1998) Increase in syntaxin 1B and glutamate release in mossy fibre terminals following induction of LTP in the dentate gyms: a candidate molecular mechanism underlying transsynaptic plasticity. Eur J Neurosci 10(7), 2231–2237.PubMedCrossRefGoogle Scholar
  110. 75.
    Davis, S. et al. (1998) Increase in syntaxin 1B mRNA in hippocampal and cortical circuits during spatial learning reflects a mechanism of trans-synaptic plasticity involved in establishing a memory trace. Learn Mem 5(4–5), 375–390.PubMedGoogle Scholar
  111. 76.
    Hu, J. Y., Meng, X. and Schacher, S. (2003) Redistribution of syntaxin mRNA in neuronal cell bodies regulates protein expression and transport during synapse formation and long-term synaptic plasticity. J Neurosci 23(5), 1804–1815.PubMedGoogle Scholar
  112. 77.
    Honer, W.G. et al. (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78(1), 99–110.PubMedCrossRefGoogle Scholar
  113. 78.
    Honer, W.G. et al. (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12(4), 349–356.PubMedCrossRefGoogle Scholar
  114. 79.
    Gabriel, S.M. et al. (1997) Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry 54(6), 559–566.PubMedCrossRefGoogle Scholar
  115. 80.
    Sokolov, B.P. et al. (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48(3), 184–196.PubMedCrossRefGoogle Scholar
  116. 81.
    Aldred, M.A. et al. (2002) Constitutional deletion of chromosome 20q in two patients affected with albright hereditary osteodystrophy. Am J Med Genet 113(2), 167–172.PubMedCrossRefGoogle Scholar
  117. 82.
    Freson, K. et al. (2001) Genetic variation of the extra-large stimulatory G protein alpha-subunit leads to Gs hyperfunction in platelets and is a risk factor for bleeding. Thromb Haemost 86(3), 733–738.PubMedGoogle Scholar
  118. 83.
    Kim, C.H. and Lisman, J.E. (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19(11), 4314–4324.PubMedGoogle Scholar
  119. 84.
    Raymond, C.R., Redman, S.J. and Crouch, M.F. (2002) The phosphoinositide 3-kinase and p70 S6 kinase regulate long-term potentiation in hippocampal neurons. Neuroscience, 109(3), 531–536.PubMedCrossRefGoogle Scholar
  120. 85.
    Meng, Y. et al. (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35(1), 121–133.PubMedCrossRefGoogle Scholar
  121. 86.
    Stork, O. et al. (2001) Identification of genes expressed in the amygdala during the formation of fear memory. Learn Mem 8(4), 209–219.PubMedCrossRefGoogle Scholar
  122. 87.
    Suchy, S.F. and Nussbaum, R.L. (2002) The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 71(6), 1420–1427.PubMedCrossRefGoogle Scholar
  123. 88.
    Nunoi, H. et al. (1999) A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci USA 96(15), 8693–8698.PubMedCrossRefGoogle Scholar
  124. 89.
    Conquet, F. et al. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluRl. Nature 372(6503), 237–243.PubMedCrossRefGoogle Scholar
  125. 90.
    Aiba, A. et al. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluRl mutant mice. Cell 79(2), 377–388.PubMedCrossRefGoogle Scholar
  126. 91.
    Thomas, K.L. et al. (1996) Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo. Learn Mem 3(2–3), 197–208.PubMedCrossRefGoogle Scholar
  127. 92.
    Petersen, S. et al. (2002) Differential effects of mGluRl and mGlur5 antagonism on spatial learning in rats. Pharmacol Biochem Behav 73(2), 381–389.PubMedCrossRefGoogle Scholar
  128. 93.
    Riedel, G., Sandager-Nielsen, K. and Macphail, E.M. (2002) Impairment of contextual fear conditioning in rats by Group I mGluRs: reversal by the nootropic nefiracetam. Pharmacol Biochem Behav 73(2), 391–399.PubMedCrossRefGoogle Scholar
  129. 94.
    Neugebauer, V. et al. (2003) Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 23(1), 52–63.PubMedGoogle Scholar
  130. 95.
    Kato, A. et al. (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412(1), 183–189.PubMedCrossRefGoogle Scholar
  131. 96.
    Kato, A. et al. (1998) Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J Biol Chem 273(37), 23969–23975.PubMedCrossRefGoogle Scholar
  132. 97.
    Matsuo, R. et al. (2000) Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J Neurochem 74(6), 2239–2349.PubMedCrossRefGoogle Scholar
  133. 98.
    French, P.J. et al. (2001) Subfìeld-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo. Eur J Neurosci 13(5), 968–976.PubMedCrossRefGoogle Scholar
  134. 99.
    Massicotte, G. (2000) Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol Life Sci 57(11), 1542–1550.PubMedCrossRefGoogle Scholar
  135. 100.
    Chabot, C. et al. (1998) Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8(3), 299–309.PubMedCrossRefGoogle Scholar
  136. 101.
    Normandin, M. et al. (1996) Involvement of the 12-lipoxygenase pathway of arachidonic acid metabolism in homosynaptic long-term depression of the rat hippocampus. Brain Res 730(1–2), 40–46.PubMedGoogle Scholar
  137. 102.
    Fujita, S. et al.(2000) Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn J Pharmacol 83(3), 277–278.PubMedCrossRefGoogle Scholar
  138. 103.
    Holscher, C. and Rose, S.P. (1994) Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behav Neural Biol 61(3), 225–232.PubMedCrossRefGoogle Scholar
  139. 104.
    Peet, M. et al. (1998) Association of the Ban I dimorphic site at the human cytosolic phospholipase A2 gene with schizophrenia. Psychiatr Genet 8(3), 191–192.PubMedCrossRefGoogle Scholar
  140. 105.
    Hudson, C.J. et al. (1996) Genetic variant near cytosolic phospholipase A2 associated with schizophrenia. Schizophr Res 21(2), 111–116.PubMedCrossRefGoogle Scholar
  141. 106.
    Gattaz, W.F. and Brunner, J. (1996) Phospholipase A2 and the hypofrontality hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 55(1–2), 109–113.PubMedCrossRefGoogle Scholar
  142. 107.
    Luthi, A. et al. (1999) Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24(2), 389–399.PubMedCrossRefGoogle Scholar
  143. 108.
    Mirnics, K. et al. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28(1), 53–67.PubMedCrossRefGoogle Scholar
  144. 109.
    Pelkey, K.A. et al. (2002) Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34(1), 127–138.PubMedCrossRefGoogle Scholar
  145. 110.
    Holmes, S.E. et al. (1997) Disruption of the clathrin heavy chain-like gene (CLTCL) associated with features of DGS/VCFS: a balanced (21;22)(p12;q11) translocation. Hum Mol Genet 6(3), 357–367.PubMedCrossRefGoogle Scholar
  146. 111.
    Zhuo, M. et al. (1999) A selective role of calcineurin aalpha in synaptic depotentiation in hippocampus. Proc Natl Acad Sci USA 96(8), 4650–4655.PubMedCrossRefGoogle Scholar
  147. 112.
    Zeng, H. et al. (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107(5), 617–629.PubMedCrossRefGoogle Scholar
  148. 113.
    Malleret, G. et al. (2001) Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104(5), 675–586.PubMedGoogle Scholar
  149. 114.
    Winder, D.G. et al. (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92(1), 25–37.PubMedCrossRefGoogle Scholar
  150. 115.
    Lin, C.H., Lee, C.C. and Gean, P.W. (2003) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63(1), 44–52.PubMedCrossRefGoogle Scholar
  151. 116.
    Kang-Park, M.H. et al. (2000) Protein phosphatases mediate depotentiation induced by high-intensity theta-burst stimulation. J Neurophysiol 89(2), 684–690.CrossRefGoogle Scholar
  152. 117.
    Mulkey, R.M. et al. (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369(6480), 486–488.PubMedCrossRefGoogle Scholar
  153. 118.
    Mansuy, I.M. et al. (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92(1), 39–49.PubMedCrossRefGoogle Scholar
  154. 119.
    Ikegami, S. and Inokuchi, K. (2000) Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience 98(4), 637–646.PubMedCrossRefGoogle Scholar
  155. 120.
    Lin, C.H. et al. (2003) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23(5), 1574–1579.PubMedGoogle Scholar
  156. 121.
    Birikh, K.R. et al. (2003) Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc Natl Acad SciU SA 100(1), 283–288.CrossRefGoogle Scholar
  157. 122.
    Wang, H. and Friedman, E. (2001) Increased association of brain protein kinase C with the receptor for activated C kinase-1 (RACK1) in bipolar affective disorder. Biol Psychiatry 50(5), 364–370.PubMedCrossRefGoogle Scholar
  158. 123.
    Roberts, L.A. et al. (1998) Increased expression of dendritic mRNA following the induction of long-term potentiation. Brain Res Mol Brain Res 56(1–2), 38–44.PubMedCrossRefGoogle Scholar
  159. 124.
    Fukunaga, K. (1993) [The role of Ca2+/calmodulin-dependent protein kinase II in the cellular signal transduction]. Nippon Yakurigaku Zasshi 102(6), 355–369.PubMedCrossRefGoogle Scholar
  160. 125.
    Fukunaga, K., Muller, D. and Miyamoto, E. (1996) CaM kinase II in long-term potentiation. Neurochem Int 28(4), 343–358.PubMedCrossRefGoogle Scholar
  161. 126.
    Woolf, N.J. et al. (1994) Pavlovian conditioning alters cortical microtubule-associated protein-2. Neuroreport 5(9), 1045–1048.PubMedCrossRefGoogle Scholar
  162. 127.
    Bury, S.D. and Jones, T.A. (2002) Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 22(19),. 8597–8606.PubMedGoogle Scholar
  163. 128.
    Genin, A. et al. (2003) LTP but not seizure is associated with up-regulation of AKAP-150. Eur J Neurosci 17(2), 331–340.PubMedCrossRefGoogle Scholar
  164. 129.
    Moita, M.A. et al. (2002) A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nat Neurosci 5(9), 837–838.PubMedCrossRefGoogle Scholar
  165. 130.
    Terrian, D.M., Ways, D.K. and Gannon, R.L. (1991) A presynaptic role for protein kinase C in hippocampal mossy fiber synaptic transmission. Hippocampus 1(3), 303–314.PubMedCrossRefGoogle Scholar
  166. 131.
    Roisin, M.P., Leinekugel, X. and Tremblay, E. (1997) Implication of protein kinase C in mechanisms of potassium-induced long-term potentiation in rat hippocampal slices. Brain Res 745(1–2), 222–230.PubMedCrossRefGoogle Scholar
  167. 132.
    Young, E. et al. (2002) Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 12(4), 457–464.PubMedCrossRefGoogle Scholar
  168. 133.
    Hodge, C.W., et al. (2002) Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cepsilon. J Clin Invest 110(7), 1003–1010.PubMedGoogle Scholar
  169. 134.
    Choi, D.S. et al. (2002) Conditional rescue of protein kinase C epsilon regulates ethanol preference and hypnotic sensitivity in adult mice. J Neurosci 22(22), 9905–9911.PubMedGoogle Scholar
  170. 135.
    Hodge, C.W. et al. (1999) Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat Neurosci 2(11), 997–1002.PubMedCrossRefGoogle Scholar
  171. 136.
    Norman, E.D. et al. (2000) Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. J Neurochem 74(1), 192–198.PubMedCrossRefGoogle Scholar
  172. 137.
    Akirav, I., Sandi, C. and Richter-Levin, G. (2001) Differential activation of hippocampus and amygdala following spatial learning under stress. Eur J Neurosci 14(4), 719–725.PubMedCrossRefGoogle Scholar
  173. 138.
    Kyosseva, S.V., et al. (1999) Mitogen-activated protein kinases in schizophrenia. Biol Psychiatry 46(5), 689–696.PubMedCrossRefGoogle Scholar
  174. 139.
    Dwivedi, Y. et al. (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77(3), 916–928.PubMedCrossRefGoogle Scholar
  175. 140.
    Schenck, A. et al. (2001) A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA 98(15), 8844–8849.PubMedCrossRefGoogle Scholar
  176. 141.
    Ðardoni, B. and Mandel, J.L. (2002) Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Curr Opin Genet Dev 12(3), 284–293.CrossRefGoogle Scholar
  177. 142.
    Costa, R.M. et al. (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415(6871), 526–530.PubMedCrossRefGoogle Scholar
  178. 143.
    Silva, A.J. et al. (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15(3), 281–284.PubMedCrossRefGoogle Scholar
  179. 144.
    Samuelsson, B. and Samuelsson, S. (1989) Neurofibromatosis in Gothenburg, Sweden. I. Background, study design and epidemiology. Neurofibromatosis 2(1), 6–22.PubMedGoogle Scholar
  180. 145.
    Samuelsson, B. and Riccardi, V.M. (1989) Neurofibromatosis in Gothenburg, Sweden. II. Intellectual compromise. Neurofibromatosis 2(2), 78–83.PubMedGoogle Scholar
  181. 146.
    von Deimling, A., Krone, W. and Menon, A.G. (1995) Neurofibromatosis type 1: pathology, clinical features and molecular genetics. Brain Pathol 5(2), 153–162.CrossRefGoogle Scholar
  182. 147.
    Manabe, T. et al. (2000) Regulation of long-term potentiation by H-Ras through NMDA receptor phosphorylation. J Neurosci 20(7), 2504–2511.PubMedGoogle Scholar
  183. 148.
    Moro, F. et al. (2002) Familial periventricular heterotopia: missense and distal truncating mutations of the FLN1 gene. Neurology 58(6), 916–921.PubMedCrossRefGoogle Scholar
  184. 149.
    Hulo, S. et al. (2002) A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity. Eur J Neurosci 15(12), 1976–1982.PubMedCrossRefGoogle Scholar
  185. 150.
    Wong, K.L., Murakami, K. and Routtenberg, A. (1989) Dietary cis-fatty acids that increase protein F1 phosphorylation enhance spatial memory. Brain Res 505(2), 302–305.PubMedCrossRefGoogle Scholar
  186. 151.
    Zhao, W., Ng, K.T. and Sedman, G.L. (1995) Passive avoidance learning induced change in GAP43 phosphorylation in day-old chicks. Brain Res Bull 36(1), 11–17.PubMedCrossRefGoogle Scholar
  187. 152.
    Perrone-Bizzozero, N.I. et al. (1996) Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia Proc Natl Acad Sci USA 93(24), 14182–14187.PubMedCrossRefGoogle Scholar
  188. 153.
    Tang, L., Hung, C.P. and Schuman, E.M. (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20(6), 1165–1175.PubMedCrossRefGoogle Scholar
  189. 154.
    Huntley, G.W., Gil, O. and Bozdagi, O. (2002) The cadherin family of cell adhesion molecules: multiple roles in synaptic plasticity. Neuroscientist 8(3), 221–233.PubMedGoogle Scholar
  190. 155.
    Bozdagi, O. et al. (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28(1), 245–259.PubMedCrossRefGoogle Scholar
  191. 156.
    Hernandez, F. et al. (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 83(6), 1529–1533.PubMedCrossRefGoogle Scholar
  192. 157.
    Li, X., Bijur, G.N. and Jope, R.S. (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord 4(2), 137–144.PubMedCrossRefGoogle Scholar
  193. 158.
    Shahraki, A. and Stone, T.W. (2002) Long-term potentiation and adenosine sensitivity are unchanged in the AS/AGU protein kinase Cgamma-deficient rat. Neurosci Lett 327(3), 165–168.PubMedCrossRefGoogle Scholar
  194. 159.
    Abeliovich, A. et al. (1993) Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75(7), 1253–1262.PubMedCrossRefGoogle Scholar
  195. 160.
    Hirono, M. et al. (2001) Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase Cbetal are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem 276(48), 45236–45242.PubMedCrossRefGoogle Scholar
  196. 161.
    Abeliovich, A. et al. (1993) PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75(7), 1263–1271.PubMedCrossRefGoogle Scholar
  197. 162.
    Colombo, P.J. and Gallagher, M. (2002) Individual differences in spatial memory among aged rats are related to hippocampal PKCgamma immunoreactivity. Hippocampus 12(2), 285–289.PubMedCrossRefGoogle Scholar
  198. 163.
    Colombo, P.J., Wetsel, W.C. and Gallagher, M. (1997) Spatial memory is related to hippocampal subcellular concentrations of calcium-dependent protein kinase C isoforms in young and aged rats. Proc Natl Acad Sci USA 94(25),14195–14199.PubMedCrossRefGoogle Scholar
  199. 164.
    Douma, B.R., Van der Zee, E.A. and Luiten, P.G. (1998) Translocation of protein kinase Cgamma occurs during the early phase of acquisition of food rewarded spatial learning. Behav Neurosci 112(3), 496–501.PubMedCrossRefGoogle Scholar
  200. 165.
    Krugers, H.J. et al. (1997) Exposure to chronic psychosocial stress and corticosterone in the rat: effects on spatial discrimination learning and hippocampal protein kinase Cgamma immunoreactivity. Hippocampus 7(4), 427–436.PubMedCrossRefGoogle Scholar
  201. 166.
    Malmberg, A.B. et al. (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278(5336), 279–283.PubMedCrossRefGoogle Scholar
  202. 167.
    O’Dell, T.J. et al. (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 265(5171), 542–526.PubMedCrossRefGoogle Scholar
  203. 168.
    Linden, D.J., Dawson, T.M. and Dawson, V.L. (1995) An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture. J Neurosci 15(7 Pt 2), 5098–5105.PubMedGoogle Scholar
  204. 169.
    Doreulee, N. et al. (2003) Cortico-striatal synaptic plasticity in endothelial nitric oxide synthase deficient mice. Brain Res 964(1), 159–163.PubMedCrossRefGoogle Scholar
  205. 170.
    Son, H. et al. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87(6), 1015–1023.PubMedCrossRefGoogle Scholar
  206. 171.
    Doyle, C. et al. (1996) The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J Neurosci 16(1), 418–424.PubMedGoogle Scholar
  207. 172.
    Malen, P.L. and Chapman, P.F. (1997) Nitric oxide facilitates long-term potentiation, but not long-term depression. J Neurosci 17(7), 2645–2651.PubMedGoogle Scholar
  208. 173.
    Haley, J.E., Malen, P.L. and Chapman, P.F. (1993) Nitric oxide synthase inhibitors block long-term potentiation induced by weak but not strong tetanic stimulation at physiological brain temperatures in rat hippocampal slices. Neurosci Lett 160(1), 85–88.PubMedCrossRefGoogle Scholar
  209. 174.
    Maren, S. (1998) Effects of 7-nitroindazole, a neuronal nitric oxide synthase (nNOS) inhibitor, on locomotor activity and contextual fear conditioning in rats. Brain Res 804(1), 155–158.PubMedCrossRefGoogle Scholar
  210. 175.
    Nelson, R.J. et al. (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378(6555), 383–386.PubMedCrossRefGoogle Scholar
  211. 176.
    Kriegsfeld, L.J. et al. (1999) Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 89(2), 311–315.PubMedCrossRefGoogle Scholar
  212. 177.
    Le Roy, I. et al. (2000) Loss of aggression, after transfer onto a C57BL/6J background, in mice carrying a targeted disruption of the neuronal nitric oxide synthase gene. Behav Genet 30(5), 367–373.PubMedCrossRefGoogle Scholar
  213. 178.
    Gammie, S.C. and Nelson, R.J. (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19(18), 8027–8035.PubMedGoogle Scholar
  214. 179.
    Kriegsfeld, L.J. et al. (1997) Aggressive behavior in male mice lacking the gene for neuronal nitric oxide synthase requires testosterone. Brain Res 769(1), 66–70.PubMedCrossRefGoogle Scholar
  215. 180.
    Demas, G.E. et al. (1997) Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. Mol Med 3(9), 610–616.PubMedGoogle Scholar
  216. 181.
    Araki, T. et al. (2001) Nitric oxide synthase inhibitors cause motor deficits in mice. Eur Neuropsychopharmacol 11(2), 125–133.PubMedCrossRefGoogle Scholar
  217. 182.
    Shinkai, T. et al. (2002) Allelic association of the neuronal nitric oxide synthase (NOS1) gene with schizophrenia. Mol Psychiatry 7(6), 560–563.PubMedCrossRefGoogle Scholar
  218. 183.
    Selcher, J.C. et al. (2001) Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Mem 8(1), 11–19.PubMedCrossRefGoogle Scholar
  219. 184.
    Mazzucchelli, C. et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34(5), 807–820.PubMedCrossRefGoogle Scholar
  220. 185.
    Jones, M.W. et al. (1999) Molecular mechanisms of long-term potentiation in the insular cortex in vivo. J Neurosci 19(21), RC36.PubMedGoogle Scholar
  221. 186.
    Watabe, A.M., Zaki, P.A. and O’Dell, T.J. (2000) Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20(16), 5924–5931.PubMedGoogle Scholar
  222. 187.
    Winder, D.G. et al. (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24(3), 715–726.PubMedCrossRefGoogle Scholar
  223. 188.
    Atkins, C.M. et al. (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7), 602–609.PubMedCrossRefGoogle Scholar
  224. 189.
    Kahn, L. et al. (2001) Group 2 metabotropic glutamate receptors induced long term depression in mouse striatal slices. Neurosci Lett 316(3), 178–182.PubMedCrossRefGoogle Scholar
  225. 190.
    Trivier, E. et al. (1996) Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384(6609), 567–570.PubMedCrossRefGoogle Scholar
  226. 191.
    Abidi, F. et al. (1999) Novel mutations in Rsk-2, the gene for Coffin-Lowry syndrome (CLS). Eur J Hum Genet 7(1), 20–26.PubMedCrossRefGoogle Scholar
  227. 192.
    McCandless, S.E. et al. (2000) Adult with an interstitial deletion of chromosome 10 [del(10)(q25. 1q25.3)]: overlap with Coffin-Lowry syndrome. Am J Med Genet 95(2), 93–98.PubMedCrossRefGoogle Scholar
  228. 193.
    Guzowski, J.F. et al. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20(11), 3993–4001.PubMedGoogle Scholar
  229. 194.
    Waltereit, R. et al. (2001) Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 21(15), 5484–5493.PubMedGoogle Scholar
  230. 195.
    Guzowski, J.F. et al. (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21(14), 5089–5098.PubMedGoogle Scholar
  231. 196.
    Kelly, M.P. and Deadwyler, S.A. (2002) Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance. Neuroscience 110(4), 617–626.PubMedCrossRefGoogle Scholar
  232. 197.
    Janz, R. et al.(1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24(3), 687–700.PubMedCrossRefGoogle Scholar
  233. 198.
    Luthi, A. et al. (1996) Reduction of hippocampal long-term potentiation in transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. J Neurosci Res 46(1), 1–6.PubMedCrossRefGoogle Scholar
  234. 199.
    Bliss, T. et al. (2000) Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr Biol 10(24), 1607–1610.PubMedCrossRefGoogle Scholar
  235. 200.
    Wolfer, D.P. et al. (1998) Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. Eur J Neurosci 10(2), 708–717.PubMedCrossRefGoogle Scholar
  236. 201.
    Montag-Sallaz, M., Schachner, M. and Montag, D. (2002) Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol 22(22), 7967–7981.PubMedCrossRefGoogle Scholar
  237. 202.
    Kurumaji, A. et al. (2001) An association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample. Am J Med Genet 105(1), 99–104.PubMedCrossRefGoogle Scholar
  238. 203.
    Wong, E.V. et al. (1995) Mutations in the cell adhesion molecule L1 cause mental retardation. Trends Neurosci 18(4), 168–172.PubMedCrossRefGoogle Scholar
  239. 204.
    Rosenthal, A., Jouet, M. and Kenwrick, S. (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2(2), 107–112.PubMedCrossRefGoogle Scholar
  240. 205.
    Lu, Y.M. et al. (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17(13), 5196–5205.PubMedGoogle Scholar
  241. 206.
    Balschun, D. and Wetzel, W. (2002) Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol Biochem Behav 73(2), 375–380.PubMedCrossRefGoogle Scholar
  242. 207.
    Nicolle, M.M. et al. (1999) Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J Neurosci 19(21), 9604–9610.PubMedGoogle Scholar
  243. 208.
    Fendt, M. and Schmid, S. (2002) Metabotropic glutamate receptors are involved in amygdaloid plasticity. Eur J Neurosci 15(9), 1535–1541.PubMedCrossRefGoogle Scholar
  244. 209.
    Rodrigues, S.M. et al. (2002)The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiarion in the lateral amygdala. J Neurosci 22(12), 5219–5229.PubMedGoogle Scholar
  245. 210.
    Riedel, G. et al. (2000) Fear conditioning-induced time- and subregion-specific increase in expression of mGlu5 receptor protein in rat hippocampus. Neuropharmacology 39(11), 1943–1951.PubMedCrossRefGoogle Scholar
  246. 211.
    Schulz, B. et al. (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41(1), 1–7.PubMedCrossRefGoogle Scholar
  247. 212.
    Ohnuma, T. et al. (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res 56(1–2), 207–217.PubMedCrossRefGoogle Scholar
  248. 213.
    Ohnuma, T. et al. (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Brain Res Mol Brain Res 85(1–2), 24–31.PubMedCrossRefGoogle Scholar
  249. 214.
    Kishimoto, Y. et al. (2001) Impaired delay but normal trace eyeblink conditioning in PLCbeta4 mutant mice. Neuroreport 12(13), 2919–2922.PubMedCrossRefGoogle Scholar
  250. 215.
    Miyata, M. et al. (2001) Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. Eur J Neurosci 13(10), 1945–1954.PubMedCrossRefGoogle Scholar
  251. 216.
    Hashimoto, K. et al. (2001) Roles of phospholipase Cbeta4 in synapse elimination and plasticity in developing and mature cerebellum. Mol Neurobiol 23(1), 69–82.PubMedCrossRefGoogle Scholar
  252. 217.
    Weeber, E.J. et al. (2001) Fear conditioning-induced alterations of phospholipase C-betala protein level and enzyme activity in rat hippocampal formation and medial frontal cortex. Neurobiol Learn Mem 76(2), 151–182.PubMedCrossRefGoogle Scholar
  253. 218.
    Pacheco, M.A. et al. (1996) Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 723(1–2), 37–45.PubMedCrossRefGoogle Scholar
  254. 219.
    Eravci, M. et al. (1999) Gene expression of glucose transporters and glycolyric enzymes in the CNS of rats behaviorally dependent on ethanol. Brain Res Mol Brain Res 65(1), 103–111.PubMedCrossRefGoogle Scholar
  255. 220.
    Roberts, L.A., Morris, B.J. and O’Shaughnessy, C.T. (1998) Involvement of two isoforms of SNAP-25 in the expression of long-term potentiarion in the rat hippocampus. Neuroreport 9(1), 33–36.PubMedCrossRefGoogle Scholar
  256. 221.
    Hess, E.J., Collins, K.A. and Wilson, M.C. (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16(9), 3104–3111.PubMedGoogle Scholar
  257. 222.
    Thompson, P.M., Sower, A.C. and Perrone-Bizzozero, N.I. (1998) Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 43(4), 239–243.PubMedCrossRefGoogle Scholar
  258. 223.
    Thompson, P.M., Rosenberger, C. and Quails, C. (1999) CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology 21(6), 717–722.PubMedCrossRefGoogle Scholar
  259. 224.
    Saito, T. et al. (2001) Polymorphism in SNAP29 gene promoter region associated with schizophrenia. Mol Psychiatry 6(2), 193–201.PubMedCrossRefGoogle Scholar
  260. 225.
    Mukaetova-Ladinska, E.B. et al. (2002) Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 317(3), 161–165.PubMedCrossRefGoogle Scholar
  261. 226.
    Fatemi, S.H. et al. (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 12(15), 3257–3262.PubMedCrossRefGoogle Scholar
  262. 227.
    Mynett-Johnson, L. et al. (1998) Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry 44(1), 47–51.PubMedCrossRefGoogle Scholar
  263. 228.
    Varshavskaia, V.M., Ivanova, O.N. and Iakimovskii, A.F. (2002) [Locomotor behavior in rats after separate and simultaneous intrastriatal microinjections of GABA-ergic drugs]. Ross Fiziol Zh Im I M Sechenova 88(10), 1317–1323.PubMedGoogle Scholar
  264. 229.
    Hodes, M.E. et al.(1997) Nonsense mutation in exon 3 of the proteolipid protein gene (PLP) in a family with an unusual form of Pelizaeus-Merzbacher disease. Am J Med Genet 69(2), 121–125.PubMedCrossRefGoogle Scholar
  265. 230.
    Saito-Ohara, F. et al. (2002) The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation. Am J Hum Genet 71(3), 637–645.PubMedCrossRefGoogle Scholar
  266. 231.
    Magenis, E. et al. (1981) Resolution of breakpoints in a complex rearrangement by use of multiple staining techniques: confirmation of suspected 12pl2.3 intraband by deletion dosage effect of LDHB. Am J Med Genet 9(2), 95–103.PubMedCrossRefGoogle Scholar
  267. 232.
    Hashimoto, R. et al. (2000) Site-specific phosphorylation of neurofilament-L is mediated by calcium/calmodulin-dependent protein kinase II in the apical dendrites during long-term potentiarion. J Neurochem 75(1), 373–382.PubMedCrossRefGoogle Scholar
  268. 233.
    Hashimoto, R. et al. (2000) Phosphorylation of neurofilament-L during LTD. Neuroreport 11(12), 2739–2742.PubMedCrossRefGoogle Scholar
  269. 234.
    Gemignani, F. and Marbini A. (2001) Charcot-Marie-Tooth disease (CMT): distinctive phenotypic and genotypic features in CMT type 2. J Neurol Sci 184(1), 1–9.PubMedCrossRefGoogle Scholar
  270. 235.
    Haroutunian, V. et al. (1996) Age-dependent spatial memory deficits in transgenic mice expressing the human mid-sized neurofilament gene: I. Brain Res Mol Brain Res 42(1), 62–70.PubMedCrossRefGoogle Scholar
  271. 236.
    Gulesserian, T. et al. (2002) Aberrant expression of centractin and capping proteins, integral constituents of the dynactin complex, in fetal down syndrome brain. Biochem Biophys Res Commun 291(1), 62–7.PubMedCrossRefGoogle Scholar
  272. 237.
    Katagiri, H., Tanaka, K. and Manabe, T. (2001) Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci 14(3), 547–553.PubMedCrossRefGoogle Scholar
  273. 238.
    Levenson, J. et al. (2002) Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci 5(2), 155–161.PubMedCrossRefGoogle Scholar
  274. 239.
    Tsuru, N., Ueda, Y. and Doi, T. (2002) Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. Epilepsia 43(8), 805–811.PubMedCrossRefGoogle Scholar
  275. 240.
    McCullumsmith, R.E. and Meador-Woodruff, J.H. (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26(3), 368–375.PubMedCrossRefGoogle Scholar
  276. 241.
    Smith, R.E. et al. (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158(9), 1393–1399.PubMedCrossRefGoogle Scholar
  277. 242.
    Burbaeva, G. et al. (2001) [Impaired cerebral glutamate metabolism in mental diseases (Alzheimer’s disease, schizophrenia). Vestn Ross Akad Med Nauk (7), 34–37.PubMedGoogle Scholar
  278. 243.
    Indo, Y. et al. (2001) Congenital insensitivity to pain with anhidrosis (CIPA): novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency. Hum Mutat 18(4), 308–318.PubMedCrossRefGoogle Scholar
  279. 244.
    Eber, S.W. et al. (1991) Triosephosphate isomerase deficiency: haemolytic anaemia, myopathy with altered mitochondria and mental retardation due to a new variant with accelerated enzyme catabolism and diminished specific activity. Eur J Pediatr 150(11), 761–766.PubMedCrossRefGoogle Scholar
  280. 245.
    Schurmans, S. et al. (1997) Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci USA 94(19), 10415–10420.PubMedCrossRefGoogle Scholar
  281. 246.
    Gurden, H. et al. (1998) Calretinin expression as a critical component in the control of dentate gyrus long-term potentiation induction in mice. Eur J Neurosci 10(9), 3029–3033.PubMedCrossRefGoogle Scholar
  282. 247.
    Edgar, P.F. et al. (2000) Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 5(1), 85–90.PubMedCrossRefGoogle Scholar
  283. 248.
    Toyooka, K. et al. (1999) 14-3-3 protein eta chain gene (YWHAH) polymorphism and its genetic association with schizophrenia. Am J Med Genet 88(2), 164–167.PubMedCrossRefGoogle Scholar
  284. 249.
    Pangalos, C. et al. (1992) No significant effect of monosomy for distal 21q22.3 on the Down syndrome phenotype in “mirror” duplications of chromosome 21. Am J Hum Genet 51(6), 1240–1250.PubMedGoogle Scholar
  285. 250.
    Schwarz, M.J. et al. (1999) Antibodies to heat shock proteins in schizophrenic patients: implications for the mechanism of the disease. Am J Psychiatry 156(7), 1103–1104.PubMedGoogle Scholar
  286. 251.
    Kim, J.J. et al. (2001) Identification of antibodies to heat shock proteins 90 kDa and 70 kDa in patients with schizophrenia. Schizophr Res 52(1–2), 127–135.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • S. G. N. Grant
    • 1
  • H. Husi
    • 1
  • J. Choudhary
    • 2
  • M. Cumiskey
    • 3
  • W. Blackstock
    • 2
  • J. D. Armstrong
    • 3
    • 1
  1. 1.Division of NeuroscienceEdinburgh UniversityEdinburghUK
  2. 2.CellzomeUK
  3. 3.School of InformaticsEdinburgh UniversityUK

Personalised recommendations