Skip to main content

The Organization and Integrative Function of the Post-Synaptic Proteome

  • Chapter
Excitatory-Inhibitory Balance

Abstract

The postsynaptic terminal is an example of signal transduction specialisation par excellence. Signaling is essentially found at two levels; at the level of transmitting electrical activity between nerve cells and converting electrical activity into molecular signals via intracellular signal transduction. A wealth of information on the molecular composition and electophysiological properties of the post synaptic terminal has raised new and crucial questions for the neurobiology of nerve cells and behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherrington, C. S. (1906) The integrative action of the nervous system (C. Scribner’s sons, New York).

    Google Scholar 

  2. Adrian, E.D. (1928) The basis of sensation, the action of the sense organs (W. W. Norton & company inc.,New York).

    Google Scholar 

  3. Hebb, D. O. (1949) The organization of behavior; a neuropsychological theory (Wiley, New York).

    Google Scholar 

  4. Grant, S. G. et al. (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice [see comments]. Science 258, 1903–10.

    Article  PubMed  CAS  Google Scholar 

  5. Sanes, J. R. & Lichtman, J. W. (1999) Can molecules explain long-term potentiation? Nat Neurosci 2, 597–604.

    Article  PubMed  CAS  Google Scholar 

  6. Opazo, P., Watabe, A. M., Grant, S. G. & O’Dell, T. J. (2003) Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms. J Neurosci 23, 3679–88.

    PubMed  CAS  Google Scholar 

  7. Migaud, M. et al. (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein [see comments]. Nature 396, 433–9.

    Article  PubMed  CAS  Google Scholar 

  8. Komiyama, N. H. et al. (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22, 9721–32.

    PubMed  CAS  Google Scholar 

  9. Watabe, A. M., Zaki, P. A. & O’Dell, T. J. (2000) Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20, 5924–31.

    PubMed  CAS  Google Scholar 

  10. Yasuda, H., Barth, A. L., Stellwagen, D. & Malenka, R. C. (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6, 15–6.

    Article  PubMed  CAS  Google Scholar 

  11. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes [see comments]. Nat Neurosci 3, 661–9.

    Article  PubMed  CAS  Google Scholar 

  12. Husi, H. & Grant, S. G. (2001) Isolation of 2000-kDa complexes of N-methyl-D-aspartate receptor and postsynaptic density 95 from mouse brain. J Neurochem 77, 281–91.

    Article  PubMed  CAS  Google Scholar 

  13. Yamauchi, T. (2002) Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density. Mass Spectrom Rev 21, 266–86.

    Article  PubMed  CAS  Google Scholar 

  14. Walikonis, R. S. et al. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20, 4069–80.

    PubMed  CAS  Google Scholar 

  15. Waterston, R. H. et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–62.

    Article  PubMed  CAS  Google Scholar 

  16. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–34.

    Article  PubMed  CAS  Google Scholar 

  17. Fromont-Racine, M., Rain, J. C. & Legrain, P. (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16, 277–82.

    Article  PubMed  CAS  Google Scholar 

  18. Schwikowski, B., Uetz, P. & Fields, S. (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18, 1257–61.

    Article  PubMed  CAS  Google Scholar 

  19. Tucker, C. L., Gera, J. F. & Uetz, P. (2001) Towards an understanding of complex protein networks. Trends Cell Biol 11, 102–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ideker, T. et al. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–34.

    Article  PubMed  CAS  Google Scholar 

  21. Gavin, A. C. et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–7.

    Article  PubMed  CAS  Google Scholar 

  22. Buchanan, M. (2002) Nexus : small worlds and the groundbreaking science of networks (W.W. Norton, New York).

    Google Scholar 

  23. Barabasi, A.-L. (2002) Linked : the new science of networks (Perseus Pub., Cambridge, MA,).

    Google Scholar 

  24. Bollobâas, B. (1985) Random graphs (Academic Press, London ; Orlando).

    Google Scholar 

  25. Barabasi, A. L. & Albert, R. (1999) Emergence of scaling in random networks. Science 286, 509–12.

    Article  PubMed  Google Scholar 

  26. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) The large-scale organization of metabolic networks. Nature 407, 651–4.

    Article  PubMed  CAS  Google Scholar 

  27. Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–2.

    Article  PubMed  CAS  Google Scholar 

  28. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (2000) Principles of neural science (McGraw-Hill Health Professions Division, New York).

    Google Scholar 

  29. Irie, M. et al. (1997) Binding of neuroligins to PSD-95. Science 277, 1511–5.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia, R. A., Vasudevan, K. & Buonanno, A. (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 91, 3596–601.

    Article  Google Scholar 

  31. Sun, Y., Savanenin, A., Reddy, P. H. & Liu, Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276, 24713–8.

    Article  PubMed  CAS  Google Scholar 

  32. Jamain, S. et al. (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34, 27–9.

    Article  PubMed  CAS  Google Scholar 

  33. Stefansson, H. et al. (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71, 877–92.

    Article  PubMed  Google Scholar 

  34. Ho, L. W. et al. (2001) The molecular biology of Huntington’s disease. Psychol Med 31, 3–14.

    Article  PubMed  CAS  Google Scholar 

  35. Husi, H. & Grant, S. G. (2002) in Neuroscience Databases: A practical Guide 51–62 (Kluwer Academic Publishers, Boston/Dordrecht/London).

    Google Scholar 

  36. Tsien, J.Z., Huerta, P.T. and Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87(7), 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  37. Cammarota, M., et al. (2000) Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus. Neurochem Res 25(5), 567–572.

    Article  PubMed  CAS  Google Scholar 

  38. Collingridge, G.L., Kehl, S.J. and McLennan, H. (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334, 33–46.

    PubMed  CAS  Google Scholar 

  39. Morris, R.G., et al. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056), 774–776.

    Article  PubMed  CAS  Google Scholar 

  40. Fanselow, M.S., et al. (1994) Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues. Behav Neurosci 108(2), 235–240.

    Article  PubMed  CAS  Google Scholar 

  41. Bauer, E.P., Schafe G.E., and LeDoux, J.E. (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22(12), 5239–5249.

    PubMed  CAS  Google Scholar 

  42. Gould, T.J., McCarthy, M.M. and Keith, R.A. (2002) MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 13(4), 287–294.

    Article  PubMed  CAS  Google Scholar 

  43. Lu, Y. and Wehner, J.M. (1997) Enhancement of contextual fear-conditioning by putative (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators and N-methyl-D-aspartate (NMDA) receptor antagonists in DBA/2J mice. Brain Res 768(1–2), 197–207.

    Article  PubMed  CAS  Google Scholar 

  44. Davis, M., et al. (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58(1–2), 175–98.

    Article  PubMed  CAS  Google Scholar 

  45. Miyamoto, Y., et al. (2002) Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit J Neurosci 22(6), 2335–2342.

    PubMed  CAS  Google Scholar 

  46. Mohn, A.R., et al. (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98(4), 427– 436.

    Article  PubMed  CAS  Google Scholar 

  47. Rondi-Reig, L., et al. (2001) CA1-specific N-methyl-D-aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proc Natl Acad Sci U S A 98(6), 3543–3548.

    Article  PubMed  CAS  Google Scholar 

  48. Dracheva, S., et al. (2001) N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 158(9), 1400–1410.

    Article  PubMed  CAS  Google Scholar 

  49. Akbarian, S., et al. (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16(1), 19–30.

    PubMed  CAS  Google Scholar 

  50. Gao, X.M., et al. (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157(7), 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  51. Sakimura, K., et al. (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373(6510),. 151–155.

    Article  PubMed  CAS  Google Scholar 

  52. Sprengel, R., et al. (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92(2): p. 279–289.

    Article  PubMed  CAS  Google Scholar 

  53. Kiyama, Y., et al. (1998) Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon 1 subunit. J Neurosci 18(17), 6704–6712.

    PubMed  CAS  Google Scholar 

  54. Moriya, T., et al. (2000) Close linkage between calcium/calmodulin kinase II alpha/beta and NMDA-2A receptors in the lateral amygdala and significance for retrieval of auditory fear conditioning. Eur J Neurosci 12(9), 3307–3314.

    Article  PubMed  CAS  Google Scholar 

  55. Kishimoto, Y., et al. (1997) Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport 8(17), 3717–3721.

    Article  PubMed  CAS  Google Scholar 

  56. Doyle, K.M., et al. (1998) Comparison of various N-methyl-D-aspartate receptor antagonists in a model of short-term memory and on overt behaviour. Behav Pharmacol 9(8), 671–681.

    Article  PubMed  CAS  Google Scholar 

  57. Khan, A.M., et al. (1999) Lateral hypothalamic NMDA receptor subunits NR2A and/or NR2B mediate eating: immunochemical/behavioral evidence. Am J Physiol 27 6(3 Pt 2), R880–891.

    PubMed  CAS  Google Scholar 

  58. Tang, Y.P., et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401(6748), 63–69.

    Article  PubMed  CAS  Google Scholar 

  59. Clayton, D.A., et al. (2002) A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci 22(9), 3628–3637.

    PubMed  CAS  Google Scholar 

  60. Wong, R.W., et al. (2002) Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci U S A 99(22), 14500–14505.

    Article  PubMed  CAS  Google Scholar 

  61. Tang, Y.P., et al. (2001) Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41(6), 779–790.

    Article  PubMed  CAS  Google Scholar 

  62. Rodrigues, S.M., Schafe, G.E. and LeDoux, J.E. (2001) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci 21(17), 6889–6896.

    PubMed  CAS  Google Scholar 

  63. Grimwood, S., et al. (1999) NR2B-containing NMDA receptors are up-regulated in temporal cortex in schizophrenia. Neuroreport 10(3), 461–465.

    Article  PubMed  CAS  Google Scholar 

  64. Liu, J., et al. (1999) Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation. J Neurosci 19(19), 8292–8299.

    PubMed  CAS  Google Scholar 

  65. Fukunaga, K., et al. (2000) Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. J Neurochem 74(2), 807–817.

    Article  PubMed  CAS  Google Scholar 

  66. Malenka, R.C., et al. (1989) An essential role for postsynapric calmodulin and protein kinase activity in long-term potentiation. Nature 340(6234), 554–557.

    Article  PubMed  CAS  Google Scholar 

  67. Menendez, L., Hidalgo, A. and Baamonde, A. (1997) Spinal calmodulin inhibitors reduce N-methyl-D-aspartate- and septide-induced nociceptive behavior. Eur J Pharmacol 335(1), 9–14.

    Article  PubMed  CAS  Google Scholar 

  68. Alvarez-Vega, M., et al. (1998) Comparison of the effects of calmidazolium, morphine and bupivacaine on N-methyl-D-aspartate-and septide-induced nociceptive behaviour. Naunyn Schmiedebergs Arch Pharmacol 358(6), 628–634.

    Article  PubMed  CAS  Google Scholar 

  69. Alvarez-Vega, M., et al. (2000) Intrathecal N-methyl-D-aspartate (NMDA) induces paradoxical analgesia in the tail-flick test in rats. Pharmacol Biochem Behav 65(4), 621–625.

    Article  PubMed  CAS  Google Scholar 

  70. Tomimatsu, Y., et al. (2002) Proteases involved in long-term potentiation. Life Sci 72(4–5), 355–361.

    Article  PubMed  CAS  Google Scholar 

  71. Massicotte, G., et al. (1991) Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation? Proc Natl Acad Sci U S A 88(5), 1893–1897.

    Article  PubMed  CAS  Google Scholar 

  72. Silva, A.J., et al. (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067), 201–206.

    Article  PubMed  CAS  Google Scholar 

  73. Hinds, H.L., Tonegawa, S. and Malinow, R. (1998) CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Learn Mem 5(4–5), 344–354.

    PubMed  CAS  Google Scholar 

  74. Malinow, R., Madison, D.V. and Tsien, R.W. (1988) Persistent protein kinase activity underlying long-term potentiation. Nature 335(6193), 820–824.

    Article  PubMed  CAS  Google Scholar 

  75. Silva, A.J., et al. (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067), 206–211.

    Article  PubMed  CAS  Google Scholar 

  76. Szapiro, G., et al. (2003) The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13(1), 53–58.

    Article  PubMed  CAS  Google Scholar 

  77. Chen, C., et al. (1994) Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science 266(5183), 291–294.

    Article  PubMed  CAS  Google Scholar 

  78. Xing, G., et al. (2002) Decreased prefrontal CaMKII alpha mRNA in bipolar illness. Neuroreport 13(4), 501–505.

    Article  PubMed  CAS  Google Scholar 

  79. Migaud, M., et al. (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynapric density-95 protein. Nature 396(6710), 433–439.

    Article  PubMed  CAS  Google Scholar 

  80. Skibinska, A., Lech, M. and Kossut, M. (2001) PSD95 protein level rises in murine somatosensory cortex after sensory training. Neuroreport 12(13), 2907–2910.

    Article  PubMed  CAS  Google Scholar 

  81. Tao, F., et al. (2001) Knockdown of PSD-95/SAP90 delays the development of neuropathic pain in rats. Neuroreport 12(15), 3251–3255.

    Article  PubMed  CAS  Google Scholar 

  82. Garry, E.M., et al. (2003) Neuropathic Sensitization of Behavioral Reflexes and Spinal NMDA Receptor/CaM Kinase II Interactions Are Disrupted in PSD-95 Mutant Mice. Curr Biol 13(4), 321–328.

    Article  PubMed  CAS  Google Scholar 

  83. Ohnuma, T., et al. (2000) Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. Neuroreport 11(14), 3133–3137.

    Article  PubMed  CAS  Google Scholar 

  84. Ranta, S., et al. (2000) Positional cloning and characterisation of the human DLGAP2 gene and its exclusion in progressive epilepsy with mental retardation. Eur J Hum Genet 8(5), 381–384.

    Article  PubMed  CAS  Google Scholar 

  85. Tavalin, S.J., et al. (2002) Regulation of GluRl by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 22(8), 3044–3051.

    PubMed  CAS  Google Scholar 

  86. Toyooka, K., et al. (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 83(4), 797–806.

    Article  PubMed  CAS  Google Scholar 

  87. Roberts, L.A., et al. (1996) Changes in hippocampal gene expression associated with the induction of long-term potentiation. Brain Res Mol Brain Res 42(1), 123–127.

    Article  PubMed  CAS  Google Scholar 

  88. Grant, S.G., et al, (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258(5090), 1903–1910.

    Article  PubMed  CAS  Google Scholar 

  89. Korte, M., et al. (2000) She-binding site in the TrkB receptor is not required for hippocampal long-term potentiation. Neuropharmacology 39(5), 717–724.

    Article  PubMed  CAS  Google Scholar 

  90. Salter, M.W. (1998) Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem Pharmacol 56(7), 789–798.

    Article  PubMed  CAS  Google Scholar 

  91. Zhao, W., et al. (2000) Nonreceptor tyrosine protein kinase pp60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions. Proc Natl Acad Sci U S A 97(14), 8098–8103.

    Article  PubMed  CAS  Google Scholar 

  92. Nishihara, E., et al. (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci 23(1), 213–222.

    PubMed  CAS  Google Scholar 

  93. Uetani, N., et al. (2000) Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. Embo J 19(12), 2775–2785.

    Article  PubMed  CAS  Google Scholar 

  94. Tartaglia, M., et al. (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4), 465–468.

    Article  PubMed  CAS  Google Scholar 

  95. Contractor, A., Swanson, G. and Heinemann, S.F. (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29(1), 209–216.

    Article  PubMed  CAS  Google Scholar 

  96. Porter, R.H., Eastwood, S.L. and Harrison, P.J. (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia Brain Res 751(2), 217–231.

    Article  PubMed  CAS  Google Scholar 

  97. Komiyama, N.H., et al. (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22(22), 9721–9732.

    PubMed  CAS  Google Scholar 

  98. Kim, J.H., et al. (2003) The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23(4), 1119–1124.

    PubMed  CAS  Google Scholar 

  99. Huang, Y., et al. (2001) CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29(2), 485–496.

    Article  PubMed  CAS  Google Scholar 

  100. Lauri, S.E., Taira, T. and Rauvala, H. (2000) High-frequency synaptic stimulation induces association of fyn and c-src to distinct phosphorylated components. Neuroreport 11(5), 997–1000.

    Article  PubMed  CAS  Google Scholar 

  101. Yamagata, K., et al. (1994) rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269(23), 16333–16339.

    PubMed  CAS  Google Scholar 

  102. Geist, R.T., et al. (1996) Expression of the tuberous sclerosis 2 gene product, tuberin, in adult and developing nervous system tissues. Neurobiol Dis 3(2), 111–20.

    Article  PubMed  CAS  Google Scholar 

  103. Castillo, P.E., et al. (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388(6642), 590–3.

    Article  PubMed  CAS  Google Scholar 

  104. Lonart, G., et al. (1998) Mechanism of action of rab3A in mossy fiber LTP. Neuron 21(5), 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  105. D’Adamo, P. et al. (1998) Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet 19(2), 134–139.

    Article  PubMed  Google Scholar 

  106. Lynch, M.A., et al. (1994) Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyrus. Neuroscience 60(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  107. Ferguson, G.D. et al. (2000) Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proc Natl Acad Sci USA 97(10), 5598–5603.

    Article  PubMed  CAS  Google Scholar 

  108. Rodger, J., et al. (1998) Induction of long-term potentiation in vivo regulates alternate splicing to alter syntaxin 3 isoform expression in rat dentate gyrus. J Neurochem 71(2), 666–675.

    Article  PubMed  CAS  Google Scholar 

  109. Helme-Guizon, A., et al. (1998) Increase in syntaxin 1B and glutamate release in mossy fibre terminals following induction of LTP in the dentate gyms: a candidate molecular mechanism underlying transsynaptic plasticity. Eur J Neurosci 10(7), 2231–2237.

    Article  PubMed  CAS  Google Scholar 

  110. Davis, S. et al. (1998) Increase in syntaxin 1B mRNA in hippocampal and cortical circuits during spatial learning reflects a mechanism of trans-synaptic plasticity involved in establishing a memory trace. Learn Mem 5(4–5), 375–390.

    PubMed  CAS  Google Scholar 

  111. Hu, J. Y., Meng, X. and Schacher, S. (2003) Redistribution of syntaxin mRNA in neuronal cell bodies regulates protein expression and transport during synapse formation and long-term synaptic plasticity. J Neurosci 23(5), 1804–1815.

    PubMed  CAS  Google Scholar 

  112. Honer, W.G. et al. (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78(1), 99–110.

    Article  PubMed  CAS  Google Scholar 

  113. Honer, W.G. et al. (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12(4), 349–356.

    Article  PubMed  Google Scholar 

  114. Gabriel, S.M. et al. (1997) Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry 54(6), 559–566.

    Article  PubMed  CAS  Google Scholar 

  115. Sokolov, B.P. et al. (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48(3), 184–196.

    Article  PubMed  CAS  Google Scholar 

  116. Aldred, M.A. et al. (2002) Constitutional deletion of chromosome 20q in two patients affected with albright hereditary osteodystrophy. Am J Med Genet 113(2), 167–172.

    Article  PubMed  Google Scholar 

  117. Freson, K. et al. (2001) Genetic variation of the extra-large stimulatory G protein alpha-subunit leads to Gs hyperfunction in platelets and is a risk factor for bleeding. Thromb Haemost 86(3), 733–738.

    PubMed  CAS  Google Scholar 

  118. Kim, C.H. and Lisman, J.E. (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19(11), 4314–4324.

    PubMed  CAS  Google Scholar 

  119. Raymond, C.R., Redman, S.J. and Crouch, M.F. (2002) The phosphoinositide 3-kinase and p70 S6 kinase regulate long-term potentiation in hippocampal neurons. Neuroscience, 109(3), 531–536.

    Article  PubMed  CAS  Google Scholar 

  120. Meng, Y. et al. (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35(1), 121–133.

    Article  PubMed  CAS  Google Scholar 

  121. Stork, O. et al. (2001) Identification of genes expressed in the amygdala during the formation of fear memory. Learn Mem 8(4), 209–219.

    Article  PubMed  CAS  Google Scholar 

  122. Suchy, S.F. and Nussbaum, R.L. (2002) The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 71(6), 1420–1427.

    Article  PubMed  CAS  Google Scholar 

  123. Nunoi, H. et al. (1999) A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci USA 96(15), 8693–8698.

    Article  PubMed  CAS  Google Scholar 

  124. Conquet, F. et al. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluRl. Nature 372(6503), 237–243.

    Article  PubMed  CAS  Google Scholar 

  125. Aiba, A. et al. (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluRl mutant mice. Cell 79(2), 377–388.

    Article  PubMed  CAS  Google Scholar 

  126. Thomas, K.L. et al. (1996) Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo. Learn Mem 3(2–3), 197–208.

    Article  PubMed  CAS  Google Scholar 

  127. Petersen, S. et al. (2002) Differential effects of mGluRl and mGlur5 antagonism on spatial learning in rats. Pharmacol Biochem Behav 73(2), 381–389.

    Article  PubMed  CAS  Google Scholar 

  128. Riedel, G., Sandager-Nielsen, K. and Macphail, E.M. (2002) Impairment of contextual fear conditioning in rats by Group I mGluRs: reversal by the nootropic nefiracetam. Pharmacol Biochem Behav 73(2), 391–399.

    Article  PubMed  CAS  Google Scholar 

  129. Neugebauer, V. et al. (2003) Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 23(1), 52–63.

    PubMed  CAS  Google Scholar 

  130. Kato, A. et al. (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412(1), 183–189.

    Article  PubMed  CAS  Google Scholar 

  131. Kato, A. et al. (1998) Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J Biol Chem 273(37), 23969–23975.

    Article  PubMed  CAS  Google Scholar 

  132. Matsuo, R. et al. (2000) Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J Neurochem 74(6), 2239–2349.

    Article  PubMed  CAS  Google Scholar 

  133. French, P.J. et al. (2001) Subfìeld-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo. Eur J Neurosci 13(5), 968–976.

    Article  PubMed  CAS  Google Scholar 

  134. Massicotte, G. (2000) Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol Life Sci 57(11), 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  135. Chabot, C. et al. (1998) Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8(3), 299–309.

    Article  PubMed  CAS  Google Scholar 

  136. Normandin, M. et al. (1996) Involvement of the 12-lipoxygenase pathway of arachidonic acid metabolism in homosynaptic long-term depression of the rat hippocampus. Brain Res 730(1–2), 40–46.

    PubMed  CAS  Google Scholar 

  137. Fujita, S. et al.(2000) Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn J Pharmacol 83(3), 277–278.

    Article  PubMed  CAS  Google Scholar 

  138. Holscher, C. and Rose, S.P. (1994) Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behav Neural Biol 61(3), 225–232.

    Article  PubMed  CAS  Google Scholar 

  139. Peet, M. et al. (1998) Association of the Ban I dimorphic site at the human cytosolic phospholipase A2 gene with schizophrenia. Psychiatr Genet 8(3), 191–192.

    Article  PubMed  CAS  Google Scholar 

  140. Hudson, C.J. et al. (1996) Genetic variant near cytosolic phospholipase A2 associated with schizophrenia. Schizophr Res 21(2), 111–116.

    Article  PubMed  CAS  Google Scholar 

  141. Gattaz, W.F. and Brunner, J. (1996) Phospholipase A2 and the hypofrontality hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 55(1–2), 109–113.

    Article  PubMed  CAS  Google Scholar 

  142. Luthi, A. et al. (1999) Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24(2), 389–399.

    Article  PubMed  CAS  Google Scholar 

  143. Mirnics, K. et al. (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28(1), 53–67.

    Article  PubMed  CAS  Google Scholar 

  144. Pelkey, K.A. et al. (2002) Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34(1), 127–138.

    Article  PubMed  CAS  Google Scholar 

  145. Holmes, S.E. et al. (1997) Disruption of the clathrin heavy chain-like gene (CLTCL) associated with features of DGS/VCFS: a balanced (21;22)(p12;q11) translocation. Hum Mol Genet 6(3), 357–367.

    Article  PubMed  CAS  Google Scholar 

  146. Zhuo, M. et al. (1999) A selective role of calcineurin aalpha in synaptic depotentiation in hippocampus. Proc Natl Acad Sci USA 96(8), 4650–4655.

    Article  PubMed  CAS  Google Scholar 

  147. Zeng, H. et al. (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107(5), 617–629.

    Article  PubMed  CAS  Google Scholar 

  148. Malleret, G. et al. (2001) Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104(5), 675–586.

    PubMed  CAS  Google Scholar 

  149. Winder, D.G. et al. (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92(1), 25–37.

    Article  PubMed  CAS  Google Scholar 

  150. Lin, C.H., Lee, C.C. and Gean, P.W. (2003) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63(1), 44–52.

    Article  PubMed  CAS  Google Scholar 

  151. Kang-Park, M.H. et al. (2000) Protein phosphatases mediate depotentiation induced by high-intensity theta-burst stimulation. J Neurophysiol 89(2), 684–690.

    Article  CAS  Google Scholar 

  152. Mulkey, R.M. et al. (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369(6480), 486–488.

    Article  PubMed  CAS  Google Scholar 

  153. Mansuy, I.M. et al. (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92(1), 39–49.

    Article  PubMed  CAS  Google Scholar 

  154. Ikegami, S. and Inokuchi, K. (2000) Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience 98(4), 637–646.

    Article  PubMed  CAS  Google Scholar 

  155. Lin, C.H. et al. (2003) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23(5), 1574–1579.

    PubMed  CAS  Google Scholar 

  156. Birikh, K.R. et al. (2003) Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc Natl Acad SciU SA 100(1), 283–288.

    Article  CAS  Google Scholar 

  157. Wang, H. and Friedman, E. (2001) Increased association of brain protein kinase C with the receptor for activated C kinase-1 (RACK1) in bipolar affective disorder. Biol Psychiatry 50(5), 364–370.

    Article  PubMed  CAS  Google Scholar 

  158. Roberts, L.A. et al. (1998) Increased expression of dendritic mRNA following the induction of long-term potentiation. Brain Res Mol Brain Res 56(1–2), 38–44.

    Article  PubMed  CAS  Google Scholar 

  159. Fukunaga, K. (1993) [The role of Ca2+/calmodulin-dependent protein kinase II in the cellular signal transduction]. Nippon Yakurigaku Zasshi 102(6), 355–369.

    Article  PubMed  CAS  Google Scholar 

  160. Fukunaga, K., Muller, D. and Miyamoto, E. (1996) CaM kinase II in long-term potentiation. Neurochem Int 28(4), 343–358.

    Article  PubMed  CAS  Google Scholar 

  161. Woolf, N.J. et al. (1994) Pavlovian conditioning alters cortical microtubule-associated protein-2. Neuroreport 5(9), 1045–1048.

    Article  PubMed  CAS  Google Scholar 

  162. Bury, S.D. and Jones, T.A. (2002) Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 22(19),. 8597–8606.

    PubMed  CAS  Google Scholar 

  163. Genin, A. et al. (2003) LTP but not seizure is associated with up-regulation of AKAP-150. Eur J Neurosci 17(2), 331–340.

    Article  PubMed  CAS  Google Scholar 

  164. Moita, M.A. et al. (2002) A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nat Neurosci 5(9), 837–838.

    Article  PubMed  CAS  Google Scholar 

  165. Terrian, D.M., Ways, D.K. and Gannon, R.L. (1991) A presynaptic role for protein kinase C in hippocampal mossy fiber synaptic transmission. Hippocampus 1(3), 303–314.

    Article  PubMed  CAS  Google Scholar 

  166. Roisin, M.P., Leinekugel, X. and Tremblay, E. (1997) Implication of protein kinase C in mechanisms of potassium-induced long-term potentiation in rat hippocampal slices. Brain Res 745(1–2), 222–230.

    Article  PubMed  CAS  Google Scholar 

  167. Young, E. et al. (2002) Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 12(4), 457–464.

    Article  PubMed  CAS  Google Scholar 

  168. Hodge, C.W., et al. (2002) Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cepsilon. J Clin Invest 110(7), 1003–1010.

    PubMed  CAS  Google Scholar 

  169. Choi, D.S. et al. (2002) Conditional rescue of protein kinase C epsilon regulates ethanol preference and hypnotic sensitivity in adult mice. J Neurosci 22(22), 9905–9911.

    PubMed  CAS  Google Scholar 

  170. Hodge, C.W. et al. (1999) Supersensitivity to allosteric GABA(A) receptor modulators and alcohol in mice lacking PKCepsilon. Nat Neurosci 2(11), 997–1002.

    Article  PubMed  CAS  Google Scholar 

  171. Norman, E.D. et al. (2000) Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. J Neurochem 74(1), 192–198.

    Article  PubMed  CAS  Google Scholar 

  172. Akirav, I., Sandi, C. and Richter-Levin, G. (2001) Differential activation of hippocampus and amygdala following spatial learning under stress. Eur J Neurosci 14(4), 719–725.

    Article  PubMed  CAS  Google Scholar 

  173. Kyosseva, S.V., et al. (1999) Mitogen-activated protein kinases in schizophrenia. Biol Psychiatry 46(5), 689–696.

    Article  PubMed  CAS  Google Scholar 

  174. Dwivedi, Y. et al. (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77(3), 916–928.

    Article  PubMed  CAS  Google Scholar 

  175. Schenck, A. et al. (2001) A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA 98(15), 8844–8849.

    Article  PubMed  CAS  Google Scholar 

  176. Ðardoni, B. and Mandel, J.L. (2002) Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Curr Opin Genet Dev 12(3), 284–293.

    Article  Google Scholar 

  177. Costa, R.M. et al. (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415(6871), 526–530.

    Article  PubMed  CAS  Google Scholar 

  178. Silva, A.J. et al. (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15(3), 281–284.

    Article  PubMed  CAS  Google Scholar 

  179. Samuelsson, B. and Samuelsson, S. (1989) Neurofibromatosis in Gothenburg, Sweden. I. Background, study design and epidemiology. Neurofibromatosis 2(1), 6–22.

    PubMed  CAS  Google Scholar 

  180. Samuelsson, B. and Riccardi, V.M. (1989) Neurofibromatosis in Gothenburg, Sweden. II. Intellectual compromise. Neurofibromatosis 2(2), 78–83.

    PubMed  CAS  Google Scholar 

  181. von Deimling, A., Krone, W. and Menon, A.G. (1995) Neurofibromatosis type 1: pathology, clinical features and molecular genetics. Brain Pathol 5(2), 153–162.

    Article  Google Scholar 

  182. Manabe, T. et al. (2000) Regulation of long-term potentiation by H-Ras through NMDA receptor phosphorylation. J Neurosci 20(7), 2504–2511.

    PubMed  CAS  Google Scholar 

  183. Moro, F. et al. (2002) Familial periventricular heterotopia: missense and distal truncating mutations of the FLN1 gene. Neurology 58(6), 916–921.

    Article  PubMed  CAS  Google Scholar 

  184. Hulo, S. et al. (2002) A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity. Eur J Neurosci 15(12), 1976–1982.

    Article  PubMed  CAS  Google Scholar 

  185. Wong, K.L., Murakami, K. and Routtenberg, A. (1989) Dietary cis-fatty acids that increase protein F1 phosphorylation enhance spatial memory. Brain Res 505(2), 302–305.

    Article  PubMed  CAS  Google Scholar 

  186. Zhao, W., Ng, K.T. and Sedman, G.L. (1995) Passive avoidance learning induced change in GAP43 phosphorylation in day-old chicks. Brain Res Bull 36(1), 11–17.

    Article  PubMed  CAS  Google Scholar 

  187. Perrone-Bizzozero, N.I. et al. (1996) Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia Proc Natl Acad Sci USA 93(24), 14182–14187.

    Article  PubMed  CAS  Google Scholar 

  188. Tang, L., Hung, C.P. and Schuman, E.M. (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20(6), 1165–1175.

    Article  PubMed  CAS  Google Scholar 

  189. Huntley, G.W., Gil, O. and Bozdagi, O. (2002) The cadherin family of cell adhesion molecules: multiple roles in synaptic plasticity. Neuroscientist 8(3), 221–233.

    PubMed  CAS  Google Scholar 

  190. Bozdagi, O. et al. (2000) Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28(1), 245–259.

    Article  PubMed  CAS  Google Scholar 

  191. Hernandez, F. et al. (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 83(6), 1529–1533.

    Article  PubMed  CAS  Google Scholar 

  192. Li, X., Bijur, G.N. and Jope, R.S. (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord 4(2), 137–144.

    Article  PubMed  CAS  Google Scholar 

  193. Shahraki, A. and Stone, T.W. (2002) Long-term potentiation and adenosine sensitivity are unchanged in the AS/AGU protein kinase Cgamma-deficient rat. Neurosci Lett 327(3), 165–168.

    Article  PubMed  CAS  Google Scholar 

  194. Abeliovich, A. et al. (1993) Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75(7), 1253–1262.

    Article  PubMed  CAS  Google Scholar 

  195. Hirono, M. et al. (2001) Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase Cbetal are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem 276(48), 45236–45242.

    Article  PubMed  CAS  Google Scholar 

  196. Abeliovich, A. et al. (1993) PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75(7), 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  197. Colombo, P.J. and Gallagher, M. (2002) Individual differences in spatial memory among aged rats are related to hippocampal PKCgamma immunoreactivity. Hippocampus 12(2), 285–289.

    Article  PubMed  Google Scholar 

  198. Colombo, P.J., Wetsel, W.C. and Gallagher, M. (1997) Spatial memory is related to hippocampal subcellular concentrations of calcium-dependent protein kinase C isoforms in young and aged rats. Proc Natl Acad Sci USA 94(25),14195–14199.

    Article  PubMed  CAS  Google Scholar 

  199. Douma, B.R., Van der Zee, E.A. and Luiten, P.G. (1998) Translocation of protein kinase Cgamma occurs during the early phase of acquisition of food rewarded spatial learning. Behav Neurosci 112(3), 496–501.

    Article  PubMed  CAS  Google Scholar 

  200. Krugers, H.J. et al. (1997) Exposure to chronic psychosocial stress and corticosterone in the rat: effects on spatial discrimination learning and hippocampal protein kinase Cgamma immunoreactivity. Hippocampus 7(4), 427–436.

    Article  PubMed  CAS  Google Scholar 

  201. Malmberg, A.B. et al. (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278(5336), 279–283.

    Article  PubMed  CAS  Google Scholar 

  202. O’Dell, T.J. et al. (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 265(5171), 542–526.

    Article  PubMed  Google Scholar 

  203. Linden, D.J., Dawson, T.M. and Dawson, V.L. (1995) An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture. J Neurosci 15(7 Pt 2), 5098–5105.

    PubMed  CAS  Google Scholar 

  204. Doreulee, N. et al. (2003) Cortico-striatal synaptic plasticity in endothelial nitric oxide synthase deficient mice. Brain Res 964(1), 159–163.

    Article  PubMed  CAS  Google Scholar 

  205. Son, H. et al. (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87(6), 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  206. Doyle, C. et al. (1996) The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J Neurosci 16(1), 418–424.

    PubMed  CAS  Google Scholar 

  207. Malen, P.L. and Chapman, P.F. (1997) Nitric oxide facilitates long-term potentiation, but not long-term depression. J Neurosci 17(7), 2645–2651.

    PubMed  CAS  Google Scholar 

  208. Haley, J.E., Malen, P.L. and Chapman, P.F. (1993) Nitric oxide synthase inhibitors block long-term potentiation induced by weak but not strong tetanic stimulation at physiological brain temperatures in rat hippocampal slices. Neurosci Lett 160(1), 85–88.

    Article  PubMed  CAS  Google Scholar 

  209. Maren, S. (1998) Effects of 7-nitroindazole, a neuronal nitric oxide synthase (nNOS) inhibitor, on locomotor activity and contextual fear conditioning in rats. Brain Res 804(1), 155–158.

    Article  PubMed  CAS  Google Scholar 

  210. Nelson, R.J. et al. (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378(6555), 383–386.

    Article  PubMed  CAS  Google Scholar 

  211. Kriegsfeld, L.J. et al. (1999) Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 89(2), 311–315.

    Article  PubMed  CAS  Google Scholar 

  212. Le Roy, I. et al. (2000) Loss of aggression, after transfer onto a C57BL/6J background, in mice carrying a targeted disruption of the neuronal nitric oxide synthase gene. Behav Genet 30(5), 367–373.

    Article  PubMed  Google Scholar 

  213. Gammie, S.C. and Nelson, R.J. (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19(18), 8027–8035.

    PubMed  CAS  Google Scholar 

  214. Kriegsfeld, L.J. et al. (1997) Aggressive behavior in male mice lacking the gene for neuronal nitric oxide synthase requires testosterone. Brain Res 769(1), 66–70.

    Article  PubMed  CAS  Google Scholar 

  215. Demas, G.E. et al. (1997) Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. Mol Med 3(9), 610–616.

    PubMed  CAS  Google Scholar 

  216. Araki, T. et al. (2001) Nitric oxide synthase inhibitors cause motor deficits in mice. Eur Neuropsychopharmacol 11(2), 125–133.

    Article  PubMed  CAS  Google Scholar 

  217. Shinkai, T. et al. (2002) Allelic association of the neuronal nitric oxide synthase (NOS1) gene with schizophrenia. Mol Psychiatry 7(6), 560–563.

    Article  PubMed  CAS  Google Scholar 

  218. Selcher, J.C. et al. (2001) Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Mem 8(1), 11–19.

    Article  PubMed  CAS  Google Scholar 

  219. Mazzucchelli, C. et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34(5), 807–820.

    Article  PubMed  CAS  Google Scholar 

  220. Jones, M.W. et al. (1999) Molecular mechanisms of long-term potentiation in the insular cortex in vivo. J Neurosci 19(21), RC36.

    PubMed  CAS  Google Scholar 

  221. Watabe, A.M., Zaki, P.A. and O’Dell, T.J. (2000) Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20(16), 5924–5931.

    PubMed  CAS  Google Scholar 

  222. Winder, D.G. et al. (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24(3), 715–726.

    Article  PubMed  CAS  Google Scholar 

  223. Atkins, C.M. et al. (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7), 602–609.

    Article  PubMed  CAS  Google Scholar 

  224. Kahn, L. et al. (2001) Group 2 metabotropic glutamate receptors induced long term depression in mouse striatal slices. Neurosci Lett 316(3), 178–182.

    Article  PubMed  CAS  Google Scholar 

  225. Trivier, E. et al. (1996) Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384(6609), 567–570.

    Article  PubMed  CAS  Google Scholar 

  226. Abidi, F. et al. (1999) Novel mutations in Rsk-2, the gene for Coffin-Lowry syndrome (CLS). Eur J Hum Genet 7(1), 20–26.

    Article  PubMed  CAS  Google Scholar 

  227. McCandless, S.E. et al. (2000) Adult with an interstitial deletion of chromosome 10 [del(10)(q25. 1q25.3)]: overlap with Coffin-Lowry syndrome. Am J Med Genet 95(2), 93–98.

    Article  PubMed  CAS  Google Scholar 

  228. Guzowski, J.F. et al. (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20(11), 3993–4001.

    PubMed  CAS  Google Scholar 

  229. Waltereit, R. et al. (2001) Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 21(15), 5484–5493.

    PubMed  CAS  Google Scholar 

  230. Guzowski, J.F. et al. (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21(14), 5089–5098.

    PubMed  CAS  Google Scholar 

  231. Kelly, M.P. and Deadwyler, S.A. (2002) Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance. Neuroscience 110(4), 617–626.

    Article  PubMed  CAS  Google Scholar 

  232. Janz, R. et al.(1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24(3), 687–700.

    Article  PubMed  CAS  Google Scholar 

  233. Luthi, A. et al. (1996) Reduction of hippocampal long-term potentiation in transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. J Neurosci Res 46(1), 1–6.

    Article  PubMed  CAS  Google Scholar 

  234. Bliss, T. et al. (2000) Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr Biol 10(24), 1607–1610.

    Article  PubMed  CAS  Google Scholar 

  235. Wolfer, D.P. et al. (1998) Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. Eur J Neurosci 10(2), 708–717.

    Article  PubMed  CAS  Google Scholar 

  236. Montag-Sallaz, M., Schachner, M. and Montag, D. (2002) Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol 22(22), 7967–7981.

    Article  PubMed  CAS  Google Scholar 

  237. Kurumaji, A. et al. (2001) An association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample. Am J Med Genet 105(1), 99–104.

    Article  PubMed  CAS  Google Scholar 

  238. Wong, E.V. et al. (1995) Mutations in the cell adhesion molecule L1 cause mental retardation. Trends Neurosci 18(4), 168–172.

    Article  PubMed  CAS  Google Scholar 

  239. Rosenthal, A., Jouet, M. and Kenwrick, S. (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2(2), 107–112.

    Article  PubMed  CAS  Google Scholar 

  240. Lu, Y.M. et al. (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17(13), 5196–5205.

    PubMed  CAS  Google Scholar 

  241. Balschun, D. and Wetzel, W. (2002) Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol Biochem Behav 73(2), 375–380.

    Article  PubMed  CAS  Google Scholar 

  242. Nicolle, M.M. et al. (1999) Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J Neurosci 19(21), 9604–9610.

    PubMed  CAS  Google Scholar 

  243. Fendt, M. and Schmid, S. (2002) Metabotropic glutamate receptors are involved in amygdaloid plasticity. Eur J Neurosci 15(9), 1535–1541.

    Article  PubMed  Google Scholar 

  244. Rodrigues, S.M. et al. (2002)The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiarion in the lateral amygdala. J Neurosci 22(12), 5219–5229.

    PubMed  CAS  Google Scholar 

  245. Riedel, G. et al. (2000) Fear conditioning-induced time- and subregion-specific increase in expression of mGlu5 receptor protein in rat hippocampus. Neuropharmacology 39(11), 1943–1951.

    Article  PubMed  CAS  Google Scholar 

  246. Schulz, B. et al. (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41(1), 1–7.

    Article  PubMed  CAS  Google Scholar 

  247. Ohnuma, T. et al. (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res 56(1–2), 207–217.

    Article  PubMed  CAS  Google Scholar 

  248. Ohnuma, T. et al. (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Brain Res Mol Brain Res 85(1–2), 24–31.

    Article  PubMed  CAS  Google Scholar 

  249. Kishimoto, Y. et al. (2001) Impaired delay but normal trace eyeblink conditioning in PLCbeta4 mutant mice. Neuroreport 12(13), 2919–2922.

    Article  PubMed  CAS  Google Scholar 

  250. Miyata, M. et al. (2001) Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. Eur J Neurosci 13(10), 1945–1954.

    Article  PubMed  CAS  Google Scholar 

  251. Hashimoto, K. et al. (2001) Roles of phospholipase Cbeta4 in synapse elimination and plasticity in developing and mature cerebellum. Mol Neurobiol 23(1), 69–82.

    Article  PubMed  CAS  Google Scholar 

  252. Weeber, E.J. et al. (2001) Fear conditioning-induced alterations of phospholipase C-betala protein level and enzyme activity in rat hippocampal formation and medial frontal cortex. Neurobiol Learn Mem 76(2), 151–182.

    Article  PubMed  CAS  Google Scholar 

  253. Pacheco, M.A. et al. (1996) Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 723(1–2), 37–45.

    Article  PubMed  CAS  Google Scholar 

  254. Eravci, M. et al. (1999) Gene expression of glucose transporters and glycolyric enzymes in the CNS of rats behaviorally dependent on ethanol. Brain Res Mol Brain Res 65(1), 103–111.

    Article  PubMed  CAS  Google Scholar 

  255. Roberts, L.A., Morris, B.J. and O’Shaughnessy, C.T. (1998) Involvement of two isoforms of SNAP-25 in the expression of long-term potentiarion in the rat hippocampus. Neuroreport 9(1), 33–36.

    Article  PubMed  CAS  Google Scholar 

  256. Hess, E.J., Collins, K.A. and Wilson, M.C. (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16(9), 3104–3111.

    PubMed  CAS  Google Scholar 

  257. Thompson, P.M., Sower, A.C. and Perrone-Bizzozero, N.I. (1998) Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 43(4), 239–243.

    Article  PubMed  CAS  Google Scholar 

  258. Thompson, P.M., Rosenberger, C. and Quails, C. (1999) CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology 21(6), 717–722.

    Article  PubMed  CAS  Google Scholar 

  259. Saito, T. et al. (2001) Polymorphism in SNAP29 gene promoter region associated with schizophrenia. Mol Psychiatry 6(2), 193–201.

    Article  PubMed  CAS  Google Scholar 

  260. Mukaetova-Ladinska, E.B. et al. (2002) Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 317(3), 161–165.

    Article  PubMed  CAS  Google Scholar 

  261. Fatemi, S.H. et al. (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 12(15), 3257–3262.

    Article  PubMed  CAS  Google Scholar 

  262. Mynett-Johnson, L. et al. (1998) Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry 44(1), 47–51.

    Article  PubMed  CAS  Google Scholar 

  263. Varshavskaia, V.M., Ivanova, O.N. and Iakimovskii, A.F. (2002) [Locomotor behavior in rats after separate and simultaneous intrastriatal microinjections of GABA-ergic drugs]. Ross Fiziol Zh Im I M Sechenova 88(10), 1317–1323.

    PubMed  CAS  Google Scholar 

  264. Hodes, M.E. et al.(1997) Nonsense mutation in exon 3 of the proteolipid protein gene (PLP) in a family with an unusual form of Pelizaeus-Merzbacher disease. Am J Med Genet 69(2), 121–125.

    Article  PubMed  CAS  Google Scholar 

  265. Saito-Ohara, F. et al. (2002) The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation. Am J Hum Genet 71(3), 637–645.

    Article  PubMed  CAS  Google Scholar 

  266. Magenis, E. et al. (1981) Resolution of breakpoints in a complex rearrangement by use of multiple staining techniques: confirmation of suspected 12pl2.3 intraband by deletion dosage effect of LDHB. Am J Med Genet 9(2), 95–103.

    Article  PubMed  CAS  Google Scholar 

  267. Hashimoto, R. et al. (2000) Site-specific phosphorylation of neurofilament-L is mediated by calcium/calmodulin-dependent protein kinase II in the apical dendrites during long-term potentiarion. J Neurochem 75(1), 373–382.

    Article  PubMed  CAS  Google Scholar 

  268. Hashimoto, R. et al. (2000) Phosphorylation of neurofilament-L during LTD. Neuroreport 11(12), 2739–2742.

    Article  PubMed  CAS  Google Scholar 

  269. Gemignani, F. and Marbini A. (2001) Charcot-Marie-Tooth disease (CMT): distinctive phenotypic and genotypic features in CMT type 2. J Neurol Sci 184(1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  270. Haroutunian, V. et al. (1996) Age-dependent spatial memory deficits in transgenic mice expressing the human mid-sized neurofilament gene: I. Brain Res Mol Brain Res 42(1), 62–70.

    Article  PubMed  CAS  Google Scholar 

  271. Gulesserian, T. et al. (2002) Aberrant expression of centractin and capping proteins, integral constituents of the dynactin complex, in fetal down syndrome brain. Biochem Biophys Res Commun 291(1), 62–7.

    Article  PubMed  CAS  Google Scholar 

  272. Katagiri, H., Tanaka, K. and Manabe, T. (2001) Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci 14(3), 547–553.

    Article  PubMed  CAS  Google Scholar 

  273. Levenson, J. et al. (2002) Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci 5(2), 155–161.

    Article  PubMed  CAS  Google Scholar 

  274. Tsuru, N., Ueda, Y. and Doi, T. (2002) Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. Epilepsia 43(8), 805–811.

    Article  PubMed  CAS  Google Scholar 

  275. McCullumsmith, R.E. and Meador-Woodruff, J.H. (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26(3), 368–375.

    Article  PubMed  CAS  Google Scholar 

  276. Smith, R.E. et al. (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158(9), 1393–1399.

    Article  PubMed  CAS  Google Scholar 

  277. Burbaeva, G. et al. (2001) [Impaired cerebral glutamate metabolism in mental diseases (Alzheimer’s disease, schizophrenia). Vestn Ross Akad Med Nauk (7), 34–37.

    PubMed  Google Scholar 

  278. Indo, Y. et al. (2001) Congenital insensitivity to pain with anhidrosis (CIPA): novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency. Hum Mutat 18(4), 308–318.

    Article  PubMed  CAS  Google Scholar 

  279. Eber, S.W. et al. (1991) Triosephosphate isomerase deficiency: haemolytic anaemia, myopathy with altered mitochondria and mental retardation due to a new variant with accelerated enzyme catabolism and diminished specific activity. Eur J Pediatr 150(11), 761–766.

    Article  PubMed  CAS  Google Scholar 

  280. Schurmans, S. et al. (1997) Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci USA 94(19), 10415–10420.

    Article  PubMed  CAS  Google Scholar 

  281. Gurden, H. et al. (1998) Calretinin expression as a critical component in the control of dentate gyrus long-term potentiation induction in mice. Eur J Neurosci 10(9), 3029–3033.

    Article  PubMed  CAS  Google Scholar 

  282. Edgar, P.F. et al. (2000) Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 5(1), 85–90.

    Article  PubMed  CAS  Google Scholar 

  283. Toyooka, K. et al. (1999) 14-3-3 protein eta chain gene (YWHAH) polymorphism and its genetic association with schizophrenia. Am J Med Genet 88(2), 164–167.

    Article  PubMed  CAS  Google Scholar 

  284. Pangalos, C. et al. (1992) No significant effect of monosomy for distal 21q22.3 on the Down syndrome phenotype in “mirror” duplications of chromosome 21. Am J Hum Genet 51(6), 1240–1250.

    PubMed  CAS  Google Scholar 

  285. Schwarz, M.J. et al. (1999) Antibodies to heat shock proteins in schizophrenic patients: implications for the mechanism of the disease. Am J Psychiatry 156(7), 1103–1104.

    PubMed  CAS  Google Scholar 

  286. Kim, J.J. et al. (2001) Identification of antibodies to heat shock proteins 90 kDa and 70 kDa in patients with schizophrenia. Schizophr Res 52(1–2), 127–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grant, S.G.N., Husi, H., Choudhary, J., Cumiskey, M., Blackstock, W., Armstrong, J.D. (2003). The Organization and Integrative Function of the Post-Synaptic Proteome. In: Hensch, T.K., Fagiolini, M. (eds) Excitatory-Inhibitory Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0039-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0039-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4895-5

  • Online ISBN: 978-1-4615-0039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics