Skip to main content

Maintaining Stability and Promoting Plasticity: Context-Dependent Functions of Inhibition

  • Chapter
Excitatory-Inhibitory Balance
  • 232 Accesses

Abstract

The central nervous system faces two paradoxical challenges: maintaining functional stability and adapting to new experience. Because many aspects of an animal’s environment are predictable, a stable operation of the neural networks in the brain is essential for generating reliable behaviors. Recent studies demonstrate that inhibition is critical in maintaining the stability of neuronal responses. It regulates synaptic gains thereby maintaining the homeostasis of local circuitries1–10. Changing the level of inhibition by pharmacological blockade or genetic manipulation results in epileptic malfunction of the brain11–15. Maturation of inhibition during development is associated with a dramatic decrease in the brain’s capacity for modification16–26.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. and Nelson, S. B. (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896.

    Article  PubMed  CAS  Google Scholar 

  2. Steele, P. M. and Mauk, M. D. (1999) Inhibitory control of LTP and LTD: stability of synapse strength. J. Neurophysiol. 81(4), 1559–1566.

    PubMed  CAS  Google Scholar 

  3. Chance, F. S. and Abbott, L. F. (2000) Divisive inhibition in recurrent networks. Network 11(2), 119–129.

    Article  PubMed  CAS  Google Scholar 

  4. Chance, F. S., Abbott, L. F. and Reyes, A. D. (2002) Gain modulation from background synaptic input. Neuron 35(4), 773–782.

    Article  PubMed  CAS  Google Scholar 

  5. LeMasson, G., Marder, E., and Abbott, L. F. (1993) Activity-dependent regulation of conductances in model neurons. Science 259(5103), 1915–1917.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, H. G., Beierlein, M. and Connors, B. W. (1995) Inhibitory control of excitable dendrites in neocortex. J.Neurophysiol. 74(4), 1810–1814.

    PubMed  CAS  Google Scholar 

  7. Kaneko, T. and Hicks, T. P. (1990) GABA(B)-related activity involved in synaptic processing of somatosensory information in S1 cortex of the anaesthetized cat. Br. J. Pharmacol. 100(4), 689–698.

    Article  PubMed  CAS  Google Scholar 

  8. Kaneko, T. and Hicks, T. P. (1988) Baclofen and gamma-aminobutyric acid differentially suppress the cutaneous responsiveness of primary somatosensory cortical neurones. Brain Res. 443(1–2), 360–366.

    Article  PubMed  CAS  Google Scholar 

  9. Greuel, J. M., Luhmann, H. J. and Singer, W. (1988) Pharmacological induction of use-dependent receptive field modifications in the visual cortex. Science 242, 74–77.

    Article  PubMed  CAS  Google Scholar 

  10. Luhmann, H. J. and Prince, D. A. (1990) Control of NMDA receptor-mediated activity by GABAergic mechanisms in mature and developing rat neocortex. Brain Res. Dev. Brain Res. 54(2), 287–290.

    Article  PubMed  CAS  Google Scholar 

  11. Lu, Y. F., Kojima, N., Tomizawa, K., Moriwaki, A., Matsushita, M., Obata, K. and Matsui, H. (1999) Enhanced synaptic transmission and reduced threshold for LTP induction in fyn-transgenic mice. Eur. J. Neurosci. 11(1), 75–82.

    Article  PubMed  CAS  Google Scholar 

  12. Lau, D., Vega-Saenz de Miera, E. C., Contreras, D., Ozaita, A., Harvey, M., Chow, A., Noebels, J. L., Paylor, R., Morgan, J. I., Leonard, C. S. and Rudy, B. (2000) Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J. Neurosci. 20(24), 9071–9085.

    PubMed  CAS  Google Scholar 

  13. Lerma, J. (1998) Kainate receptors: an interplay between excitatory and inhibitory synapses. FEBS Lett 430(1–2), 100–104.

    Article  PubMed  CAS  Google Scholar 

  14. van Brederode, J. F., Rho, J. M., Cerne, R., Tempel, B. L. and Spain, W. J. (2001) Evidence of altered inhibition in layer V pyramidal neurons from neocortex of Kcnal-null mice. Neuroscience 103(4), 921–929.

    Article  PubMed  Google Scholar 

  15. Wendling, F., Bartolomei, F., Bellanger, J. J. and Chauvel, P. (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15(9), 1499–1508.

    Article  PubMed  CAS  Google Scholar 

  16. Luhmann, H. J. and Prince, D. A. (1991) Postnatal maturation of the GABAergic system in rat neocortex. J. Neurophysiol. 65(2), 247–263.

    PubMed  CAS  Google Scholar 

  17. Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., Maffei, L. and Tonegawa, S. (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6), 739–755.

    Article  PubMed  CAS  Google Scholar 

  18. Gao, W. J., Newman, D. E., Wormington, A. B. and Pallas, S. L. (1999) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic neurons. J. Comp. Neurol. 409(2), 261–273.

    Article  PubMed  CAS  Google Scholar 

  19. Gao, W. J., Wormington, A. B., Newman, D. E. and Pallas, S. L. (2000) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons. J. Comp. Neurol. 422(1), 140–157.

    Article  PubMed  CAS  Google Scholar 

  20. Guo, Y., Kaplan, I. V., Cooper, N. G. and Mower, G. D. (1997) Expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) during postnatal development of the cat visual cortex. Brain Res. Dev. Brain Res. 103(2), 127–141.

    Article  PubMed  CAS  Google Scholar 

  21. Blue, M. E. and Parnavelas, J. G. (1983) The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J. Neurocytol. 12(4), 599–616.

    Article  PubMed  CAS  Google Scholar 

  22. M. E. Blue, and J. G. Parnavelas (1983) The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12(4), 697–712.

    Article  PubMed  CAS  Google Scholar 

  23. Rozas, C., Frank, H., Heynen, A. J., Morales, B., Bear, M. F. and Kirkwood, A. (2001) Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex. J. Neurosci. 21(17), 6791–6801.

    PubMed  CAS  Google Scholar 

  24. Katz, L. C. (1999) What’s critical for the critical period in visual cortex? Cell 99(7), 673–676.

    Article  PubMed  CAS  Google Scholar 

  25. Micheva, K. D. and Beaulieu, C. (1995) Postnatal development of GABA neurons in the rat somatosensory barrel cortex: a quantitative study. Eur. J. Neurosci. 7(3), 419–430.

    Article  PubMed  CAS  Google Scholar 

  26. Huntsman,M. M., Muñoz, A. and Jones, E. G. (1999) Temporal modulation of GABA(A) receptor subunit gene expression in developing monkey cerebral cortex. Neuroscience 91(4), 1223–1245.

    Article  PubMed  CAS  Google Scholar 

  27. Tremere, L., Hicks, T. P. and Rasmusson, D. D. (2001) Expansion of receptive fields in raccoon somatosensory cortex in vivo by GABA(A) receptor antagonism: implications for cortical reorganization. Exp. Brain Res. 136(4), 447–455.

    Article  PubMed  CAS  Google Scholar 

  28. Chowdhury, S. A. and Rasmusson, D. D. (2002) Effect of GABAB receptor blockade on receptive fields of raccoon somatosensory cortical neurons during reorganization. Exp. Brain Res. 145(2), 150–157.

    Article  PubMed  CAS  Google Scholar 

  29. Jones, E. G. (1993) GABAergic neurons and their roles in cortical plasticity in primates. Cerebral. Cortex 3, 361–372.

    Article  PubMed  CAS  Google Scholar 

  30. Micheva, K. D. and Beaulieu, C. (1997), Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: a review. Can. J. Physiol. & Pharmacol. 75(5), 470–478.

    Article  CAS  Google Scholar 

  31. Micheva, K. D. and Beaulieu, C. (1995) An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc Natl Acad Sci U S A 92(25), 11834–11838.

    Article  PubMed  CAS  Google Scholar 

  32. Jimenez-Capdeville, M. E., Dykes, R. W. and Myasnikov, A. A. (1997) Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J. Comp. Neurol. 381(1), 53–67.

    Article  PubMed  CAS  Google Scholar 

  33. Sillito, A. M., Kemp, J. A. and Blakemore, C. (1981) The role of GABAergic inhibition in the cortical effects of monocular deprivation. Nature 291(5813), 318–320.

    Article  PubMed  CAS  Google Scholar 

  34. Zheng, W. and Knudsen, E. I. (1999) Functional selection of adaptive auditory space map by GABAA-mediated inhibition. Science 284(5416), 962–965.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng, W. and Knudsen, E. I. (2001) GABAergic inhibition antagonizes adaptive adjustment of the owl’s auditory space map during the initial phase of plasticity. J. Neurosci. 21(12), 4356–4365.

    PubMed  CAS  Google Scholar 

  36. Payne, R. S. (1971) Acoustic location of prey by barn owls (Tyto alba). J. Exp. Biol. 54, 535–573.

    PubMed  CAS  Google Scholar 

  37. Knudsen, E. I. and Konishi, M. (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J. Comp. Physiol. 133, 13–21.

    Article  Google Scholar 

  38. Konishi, M. (1973) How the owl tracks its prey. Am. Sci. 61, 414–424.

    Google Scholar 

  39. Carr, C. and Boudreau, R. (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J. Comp. Neurol. 334, 337–355.

    Article  PubMed  CAS  Google Scholar 

  40. Carr, C. E. and Konishi, M. (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J. Neurosci. 10, 3227–3246.

    PubMed  CAS  Google Scholar 

  41. Konishi, M., Takahashi, T. T., Wagner, H., Sullivan, W. E. and Carr, C. E. (1988) Neurophysiological and anatomical substrates of sound localization in the owl. In: Auditory Function, G. M. Edelman, W. E. Gall, W. M. Cowan, eds. (New York: John Wiley and Sons), pp. 721–745.

    Google Scholar 

  42. Knudsen, E. I. and Konishi, M. (1978) Center-surround organization of auditory receptive fields in the owl. Science 202, 778–780.

    Article  PubMed  CAS  Google Scholar 

  43. Knudsen, E. I. and Konishi, M. (1978) A neural map of auditory space in the owl. Science 200, 795–797.

    Article  PubMed  CAS  Google Scholar 

  44. Moiseff, A. and Konishi, M. (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J. Neurosci. 3, 2553–2562.

    PubMed  CAS  Google Scholar 

  45. Moiseff, A. and Konishi, M. (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J. Neurosci. 1, 40–48.

    PubMed  CAS  Google Scholar 

  46. E. I. Knudsen, and P. F. Knudsen (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J. Comp. Neurol. 218, 187–196.

    Article  PubMed  CAS  Google Scholar 

  47. Knudsen, E. I. (1982) Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci. 2, 1177–1194.

    PubMed  CAS  Google Scholar 

  48. Olsen, J. F., Knudsen, E. I. and Esterly, S. D. (1989) Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J. Neurosci. 9, 2591–2605.

    PubMed  CAS  Google Scholar 

  49. Knudsen, E. I. and Brainard, M. S. (1995) Creating a unified representation of visual and auditory space in the brain. Annu. Rev. Neurosci. 18, 19–44.

    Article  PubMed  CAS  Google Scholar 

  50. King, A. J. and Moore, D. R. (1991) Plasticity of auditory maps in the brain. Tren. Neurosci. 14(1), 31–37.

    Article  CAS  Google Scholar 

  51. King, A. J., Kacelnik, O., Mrsic-Flogel, T. D., Schnupp, J. W., Parsons, C. H. and Moore, D. R. (2001) How plastic is spatial hearing? Audiol. Neurootol. 6(4), 182–186.

    Article  PubMed  CAS  Google Scholar 

  52. Moore, D. R., Rothhohz, V. and King, A. J. (2001) Hearing cortical activation does matter. Curr. Biol. 11(19), R782–784.

    Article  PubMed  CAS  Google Scholar 

  53. Mrsic-Flogel, T. D., King, A. J., Jenison, R. L. and Schnupp, J. W. (2001) Listening through different ears alters spatial response fields in ferret primary auditory cortex. J. Neurophysiol. 86(2), 1043–1046.

    PubMed  CAS  Google Scholar 

  54. King, A. J., Parsons, C. H. and Moore, D. R. (2000) Plasticity in the neural coding of auditory space in the mammalian brain. Proc Natl Acad Sci U S A 97(22), 11821–11828.

    Article  PubMed  CAS  Google Scholar 

  55. Hofman, P. M., Van Riswick, J. G. and Van Opstal. A. J. (1998) Relearning sound localization with new ears. Nat. Neurosci. 1(5), 417–421.

    Article  PubMed  CAS  Google Scholar 

  56. Knudsen, E. I. (1983) Early auditoiy experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222(4626), 939–942.

    Article  PubMed  CAS  Google Scholar 

  57. Knudsen, E. I. (1985) Experience alters the spatial tuning of auditory units in the optic tectum during a sensitive period in the barn owl. J. Neurosci. 5(11), 3094–3109.

    PubMed  CAS  Google Scholar 

  58. Knudsen, E. I., Esterly, S. D. and Knudsen, P. F. (1984) Monaural occlusion alters sound localization during a sensitive period in the barn owl. J. Neurosci. 4(4), 1001–1011.

    PubMed  CAS  Google Scholar 

  59. Mogdans, J. and Knudsen, E. I. (1993) Early monaural occlusion alters the neural map of interaural level differences in the inferior colliculus of the barn owl. Brain Res. 619(1–2), 29–38.

    Article  PubMed  CAS  Google Scholar 

  60. Mogdans, J. and Knudsen, E. I. (1992) Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. J. Neurosci. 12(9), 3473–3484.

    PubMed  CAS  Google Scholar 

  61. Knudsen, E. E., Eslerly, S. D. and Olsen, J. F. (1994) Adaptive plasticity of the auditory space map in the optic tectum of adult and baby bam owls in response to external ear modification. J. Neurophysiol. 71, 79–94.

    PubMed  CAS  Google Scholar 

  62. Knudsen, E. I., Esterly, S. D. and du Lac, S. (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls: acoustic basis and behavioral correlates. J. Neurosci. 11, 1727–1747.

    PubMed  CAS  Google Scholar 

  63. Knudsen, E. I. and Brainard, M. S. (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253, 85–87.

    Article  PubMed  CAS  Google Scholar 

  64. Knudsen, E. I. (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417(6886), 322–328.

    Article  PubMed  CAS  Google Scholar 

  65. Knudsen, E. I. (1999) Mechanisms of experience-dependent plasticity in the auditory localization pathway of the bam owl. J. Comp. Physiol. A 185(4), 305–321.

    Article  PubMed  CAS  Google Scholar 

  66. Knudsen, E. I. (1994) Supervised learning in the brain. J. Neurosci. 14, 3985–3997.

    PubMed  CAS  Google Scholar 

  67. Knudsen, E. I., Zheng, W. and DeBello, W. M. (2000) Traces of learning in the auditory localization pathway. Proc Natl Acad Sci U S A 97(22), 11815–11820.

    Article  PubMed  CAS  Google Scholar 

  68. Knudsen, E. I. and Knudsen, P. F. (1990) Sensitive and critical periods for visual calibration of sound localization by barn owls. J. Neurosci. 63, 131–149.

    Google Scholar 

  69. Gutfreund, Y., Zheng, W. and Knudsen, E. I. (2002) Gated visual input to the central auditory system. Science 297(5586), 1556–1559.

    Article  PubMed  CAS  Google Scholar 

  70. Hyde, P. S. and Knudsen, E. I. (2000) Topographic projection from the optic tectum to the auditory space map in the inferior colliculus of the bam owl. J. Comp. Neurol. 421(2), 146–160.

    Article  PubMed  CAS  Google Scholar 

  71. Hyde, P. S. and Knudsen, E. I. (2001) A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum. J. Neurosci. 21(21), 8586–8593

    PubMed  CAS  Google Scholar 

  72. Hyde, P. S. and Knudsen, E. I. (2002) The optic tectum controls visually guided adaptive plasticity in the owl’s auditory space map. Nature 415(6867), 73–76.

    Article  PubMed  CAS  Google Scholar 

  73. King, A. J. (2002) Neural plasticity: how the eye tells the brain about sound location. Curr. Biol. 12(11), R393–395.

    Article  PubMed  CAS  Google Scholar 

  74. Brainard, M. S. and Knudsen, E. I. (1995) Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl. J. Neurophysiol. 73(2), 595–614.

    PubMed  CAS  Google Scholar 

  75. Knudsen, E. I. (1983) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J. Comp. Neurol. 218(2), 174–186.

    Article  PubMed  CAS  Google Scholar 

  76. DeBello, W. M., Feldman, D. E. and Knudsen, E. I. (2001) Adaptive axonal remodeling in the midbrain auditory space map. J Neurosci. 21(9), 3161–3174.

    PubMed  CAS  Google Scholar 

  77. Feldman, D. E. and Knudsen, E. I. (1997) An anatomical basis for visual calibration of the auditory space map in the barn owl’s midbrain. J. Neurosci. 17(17), 6820–6837.

    PubMed  CAS  Google Scholar 

  78. Albeck, Y. (1997) Inhibition sensitive to interaural time difference in the barn owl’s inferior colliculus. Hear Res. 109(1–2), 102–108.

    Article  PubMed  CAS  Google Scholar 

  79. Fujita, I. and Konishi M., (1991) The role of GABAergic inhibition in processing of interaural time difference in the owl’s auditory system. J. Neurosci. 11, 722–729.

    PubMed  CAS  Google Scholar 

  80. Mori, K. (1997) Across-frequency nonlinear inhibition by GABA in processing of interaural time difference. Hear Res. 111(1–2), 22–30.

    Article  PubMed  CAS  Google Scholar 

  81. Kautz, D. and Wagner, H. (1998) GABAergic inhibition influences auditory motion-direction sensitivity in barn owls. J. Neurophysiol. 80(1), 172–185.

    PubMed  CAS  Google Scholar 

  82. Dykes, R. W., Landry, P., Metherate, R. and Hicks, T. P. (1984) Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons. J. Neurophysiol. 52(6), 1066–1093.

    PubMed  CAS  Google Scholar 

  83. Hicks, T. P. and Dykes, R. W. (1983) Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition. Brain Res. 274(1), 160–164.

    Article  PubMed  CAS  Google Scholar 

  84. Sillito, A. M. (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J. Physiol. 271(3), 699–720.

    PubMed  CAS  Google Scholar 

  85. Sillito, A. M. (1992) GABA mediated inhibitory processes in the function of the geniculo- striate system. Pro. Brain Res. 90, 349–384.

    Article  CAS  Google Scholar 

  86. Zheng, W. and Hall, J. C. (2000) GABAergic inhibition shapes frequency tuning and modifies response properties in the superior olivary nucleus of the leopard frog. J. Comp. Physiol. A 186(7–8), 661–671.

    Article  PubMed  CAS  Google Scholar 

  87. Kirkwood, A. and Bear, M. F. (1994) Hebbian synapses in visual cortex. J Neurosci 14, 1634–1645.

    PubMed  CAS  Google Scholar 

  88. Katz, L. C. and Shatz, C. J. (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290), 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  89. Bear, M. F. and Rittenhouse, C. D. (1999) Molecular basis for induction of ocular dominance plasticity. J. Neurobiol. 41(1), 83–91.

    Article  PubMed  CAS  Google Scholar 

  90. Hata, Y., Tsumoto, T. and Stryker, M. P. (1999) Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited. Neuron 22(2), 375–381.

    Article  PubMed  CAS  Google Scholar 

  91. Schlaggar, B. L., Fox, K. and O’Leary, D. D. (1993) Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364(6438), 623–626.

    Article  PubMed  CAS  Google Scholar 

  92. O’Leary, D. D., Ruff, N. L. and Dyck, R. H. (1994) Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4(4), 535–544.

    Article  Google Scholar 

  93. Kirkwood, A., Lee, H. K. and Bear, M. F. (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375(6529), 328–331.

    Article  PubMed  CAS  Google Scholar 

  94. Fagiolini, M. and Hensch, T. K. (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404(6774), 183–186.

    Article  PubMed  CAS  Google Scholar 

  95. Turrigiano, G. G. and Nelson, S. B. (2000) Hebb and homeostasis in neuronal plasticity. Curr. Opin.Neurobiol. 10(3), 358–364.

    Article  PubMed  CAS  Google Scholar 

  96. Turrigiano, G. G. (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Tren. in Neurosci. 22(5), 221–227.

    Article  CAS  Google Scholar 

  97. Knudsen, E. I. (1998) Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. Science 279, 1531–1533.

    Article  PubMed  CAS  Google Scholar 

  98. Dykes, R. W. (1997) Mechanisms controlling neuronal plasticity in somatosensory cortex. Can. J. Physiol. & Pharmacol. 75(5), 535–545.

    Article  CAS  Google Scholar 

  99. Rajan, R. (1998) Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat. Neurosci. 1(2), 138–143.

    Article  PubMed  CAS  Google Scholar 

  100. Rajan, R. (2001) Plasticity of excitation and inhibition in the receptive field of primary auditory cortical neurons after limited receptor organ damage. Cereb. Cortex 11(2), 171–182.

    Article  PubMed  CAS  Google Scholar 

  101. Tremere, L., Hicks, T. P. and Rasmusson, D. D. (2001) Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors. J. Neurophysiol. 86(1), 94–103.

    PubMed  CAS  Google Scholar 

  102. Kilgard, M. P. and Merzenich, M. M. (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279(5357), 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  103. Bakin, J. S. and Weinberger, N. M. (1996) Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis Proc Natl Acad Sci U S A 93(20), 11219–11224.

    Article  PubMed  CAS  Google Scholar 

  104. Bao, S., Chan, V. T. and Merzenich, M. M. (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412(6842), 79–83.

    Article  PubMed  CAS  Google Scholar 

  105. Edeline, J. M. (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog. Neurobiol. 57(2), 165–224.

    Article  PubMed  CAS  Google Scholar 

  106. Buonomano, D. V. and Merzenich, M. M. (1998) Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, W. (2003). Maintaining Stability and Promoting Plasticity: Context-Dependent Functions of Inhibition. In: Hensch, T.K., Fagiolini, M. (eds) Excitatory-Inhibitory Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0039-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0039-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4895-5

  • Online ISBN: 978-1-4615-0039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics