Adult Neurogenesis Controls Excitatory-Inhibitory Balance in the Olfactory Bulb

  • Pierre-Marie Lledo
  • Armen Saghatelyan
  • Gilles Gheusi

Abstract

In the cortex, networks of inhibitory interneurons play a crucial role in the modulation of the electrical activity patterns of the principal neurons known as projecting (glutamatergic) neurons. Inhibitory interneurons containing □-aminobutyric acid (GABA), with distinct connectivities and neurochemical features, carry out specific functions within cortical networks. They govern, for instance, the activity of the profusely interconnected ensembles of projecting neurons, and are responsible for the precise timing of individual principal cell discharges in relation to the emergent behavior of the entire cell assembly. Today, one of the central issue in developmental neurobiology is the need to characterize how both projecting neurons and the various interneurons migrate along precise pathways to find the correct sites for their final differentiation and integration. This highly temporally and spatially orchestrated migration is essential for proper brain development and function.

Keywords

Sugar Migration Magnesium Mold Germinal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hatten, M.E. (1999) Central neurons system neuronal migration. Ann. Rev. Neurosci. 22, 511–539.PubMedCrossRefGoogle Scholar
  2. 2.
    Kornack D.R. and Rakic, P. (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15, 311–321.PubMedCrossRefGoogle Scholar
  3. 3.
    Letinic, K., Zoncu, R. and Rakic, P. (2002) Origin of GABAergic herurons in the human neocortex. Nature 417, 645–649.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, S. A., Eisenstat, D. D., Shi, L. and Rubenstein, J. L. (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes, Science 278: 474–476.PubMedCrossRefGoogle Scholar
  5. 5.
    Luskin, M.B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.PubMedCrossRefGoogle Scholar
  6. 6.
    Zou, Z., Horowitz, L.F., Montmayeur, J.P., Snapper, S. and Buck L.B. (2001) Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179.PubMedCrossRefGoogle Scholar
  7. 7.
    Laurent, G. (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895.PubMedCrossRefGoogle Scholar
  8. 8.
    Mori, K., Nagao, H. and Yoshihara, Y. (1999) The olfactory bulb: coding and processing of odor molecule information, Science 286: 711–715.PubMedCrossRefGoogle Scholar
  9. 9.
    Rall, W. and Shepherd, G.M. (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol. 31, 884–915.PubMedGoogle Scholar
  10. 10.
    Adrian, E.D. (1950) The Electrical activity of the mammalian olfactory bulb. Electroencephalogr. Clin. Neurophysiol. 2, 377–388.CrossRefGoogle Scholar
  11. 11.
    Gelperin, A., Kleinfeld, D., Denk, W. and Cooke, I.R. (1996) Oscillations and gaseons oxides in invertebrate olfaction. J. Neurobiol. 30, 110–122.PubMedCrossRefGoogle Scholar
  12. 12.
    Xiong, W. and Chen, W.R. (2002) Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron 34, 115–126.PubMedCrossRefGoogle Scholar
  13. 13.
    Isaacson, J.S. (1999) Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron 23, 377–384.PubMedCrossRefGoogle Scholar
  14. 14.
    Aroniadou-Anderjaska, V., Ennis, M. and Shipley, M.T. (1999) Dendrodendritic recurrent excitation in mitral cells of the rat olflactory bulb. J. Neurophysiol. 82, 489–494.PubMedGoogle Scholar
  15. 15.
    Didier, A., Carleton, A., Bjaalie, J.G., Vincent, J.D., Ottersen, O.P., Storm-Mathisen, J. and Lledo, P.-M. (2001) A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb, Proc. Natl. Acad. Sci. USA 98: 6441–6446.PubMedCrossRefGoogle Scholar
  16. 16.
    Alvarez-Buylla, A. and Garcia-Verdugo, M. (2002) Neurogenesis in adult subventicular zone. J. Neurosci. 22, 629–634.PubMedGoogle Scholar
  17. 17.
    Temple, S. and Alvarez-Buylla, A. (1999) Stem cells in the adult mammalian central nervous system, Curr. Opin. Neurobiol. 9: 135–141.PubMedCrossRefGoogle Scholar
  18. 18.
    Gage, F.H. (2002) Neurogenesis in the adult brain, J. Neurosci. 22: 612–613.PubMedGoogle Scholar
  19. 19.
    Gheusi, G, Cremer, H., McLean, H., Chazal, G., Vincent, J.D. and Lledo, P.-M.(2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination, Proc. Natl. Acad. Sci. USA 97:1823–1828.PubMedCrossRefGoogle Scholar
  20. 20.
    Rochefort, C., Gheusi, G., Vincent, J.D. and Lledo, P.-M. (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory, J. Neurosci. 22: 2679–2689.PubMedGoogle Scholar
  21. 21.
    Mombaerts, P. (2001) How smell develops. Nat. Neurosci. 4 Suppl: 1192–1198.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhao, H. and Reed. R.R. (2001) X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell.104, 651–660.PubMedCrossRefGoogle Scholar
  23. 23.
    Bulfone, A. et al. (1998) An olfactory sensory map develops in the absensce of normal projection neurons or GABAergic interneurons. Neuron 21, 1273–1282.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin, D.M. et al. (2000) Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26, 69–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Cline, H.T. (2001) Dendritic arbor development and synaptogenesis, Curr. Opin. Neurobiol., 11:118–126.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirschenbaum, B., Doetsch, F., Lois, C. and Alvarez-Buylla, A. (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J.Neurosci. 19, 2171–2180.PubMedGoogle Scholar
  27. 27.
    Frazier-Cierpial, L. and Brunjes, P.L. (1989) Early postnatal cellular proliferation and survival in the olfactory bulb and rostral migratory stream of normal and unilaterally oder-deprived rats. J. Comp. Neurol. 289, 481–492.PubMedCrossRefGoogle Scholar
  28. 28.
    Najbauer, J. and Leon, M. (1995) Olfactory experience modulated apoptosis in the developing olfactory bulb. Brain. Res. 674, 245–251.PubMedCrossRefGoogle Scholar
  29. 29.
    Fiske, B.K. and Brunjes, P.C. (2001) NMDA receptor regulation of cell death in the rat olfactory bulb. J. Nerobiol. 47, 223–232.CrossRefGoogle Scholar
  30. 30.
    Petreanu, L and Alvarez-Buylla A. (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction, J. Neurosci. 22: 6106–6113.PubMedGoogle Scholar
  31. 31.
    Fagiolini, M. and Hensch, T.K. (2000) Inhibitory threshold for critical-period activation in primary visual cortex, Nature 404: 183–186.PubMedCrossRefGoogle Scholar
  32. 32.
    Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W. and Maffei, L. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex, Science 298: 1248–1251.PubMedCrossRefGoogle Scholar
  33. 33.
    Nottebohm, F. (2002) Why are some neurons replaced in adult brain? J. Neurosci. 22: 624–628.PubMedGoogle Scholar
  34. 34.
    Snyder, J.S., Kee, N. and Wojtowicz, J.M. (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus, J. Neurophysiol. 85: 2423–2431.PubMedGoogle Scholar
  35. 35.
    Bruce, H. M.(1959) An exteroceptive block to pregnancy in the mouse, Nature 184: 105.PubMedCrossRefGoogle Scholar
  36. 36.
    Lloyd-Thomas, A. and Keverne, E. B. (1982) Role of the brain and accessory olfactory system in the block to pregnancy in mice, Neuroscience 7: 907–913.PubMedCrossRefGoogle Scholar
  37. 37.
    Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M., Shippley, M. T. and Zufall, F. (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons, Nature 405: 792–796.PubMedCrossRefGoogle Scholar
  38. 38.
    Brennan, P. A., Kendrick, K. M. and Keverne, E. B. (1995) Neurotransmitter release in the accessory olfactory bulb during and after the formation of an olfactory memory in mice, Neuroscience 69: 1075–1086.PubMedCrossRefGoogle Scholar
  39. 39.
    Poindron, P. and Levy, F. (1990) Physiological, sensory and experiential determinants of maternal behaviour in sheep, In Mammalian Parenting, pp. 133–156. Eds N.A. Krasnegor and R.S. Bridges. Oxford University Press: New York.Google Scholar
  40. 40.
    Poindron, P. and Le Neindre, P. (1980) Endocrine and sensory regulation of maternal behavior in the ewe, Adv. Stud. Behav. 11: 75–119.CrossRefGoogle Scholar
  41. 41.
    Baldwin, B. A. and Shillito, E. E. (1974) The effects of ablation of the olfactory bulbs on parturition and maternal behaviour in soay sheep, Anim. Behav. 22: 220–223.PubMedCrossRefGoogle Scholar
  42. 42.
    Kendrick, K. M., Levy, F. and Keverne, E. B. (1992) Changes in the sensory processing of olfactory signals induced by birth in sheep, Science 256: 833–836.PubMedCrossRefGoogle Scholar
  43. 43.
    Brennan, P.A., Schellinck, H.M., de la Riva, C., Kendrick, K.M. and Keverne, E.B. (1998) Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure in mice. Neuroscience, 87(3): 583–590.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Pierre-Marie Lledo
    • 1
  • Armen Saghatelyan
    • 1
  • Gilles Gheusi
    • 1
  1. 1.Pasteur Institute, Laboratory of Perception and MemoryCentre National de la Recherche ScientifiqueParisFrance

Personalised recommendations