Advertisement

Reliability of Detection Methods for Pathogens and Availability of Molecular Methods

  • Tiffany T. Y. Guan
  • Richard A. Holley

Abstract

Detection methods for pathogens from animals or the environment are generally characterized by their microbiological sensitivity, as well as their epidemiologic sensitivity and specificity. Isaacson (2000) defined the epidemiologic sensitivity of a detection method as a combination of how few organisms can be detected by an assay (microbiological sensitivity), how well the assay performs using 'real' samples obtained from animals, whether a sample collected from a 'positive animal' is positive at the time of sampling, and whether a proper sample has been collected. Specificity of a detection assay was defined as how well the assay discriminates between the desired target organism and other related but incorrect targets. The reliability of any detection method is affected by issues concerning its sensitivity and specificity.

Keywords

Culture Method Polymerase Chain Reaction Assay Multiplex Polymerase Chain Reaction TaqMan Assay Yersinia Enterocolitica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen, M. S. 2002. Dept. Vet. Pathol., Univ. MN. Personal communication at Ann. Meet. Can. Soc. Microbiol. June 19, Saskatoon, SK.Google Scholar
  2. Bassler, H. A., S. J. A. Flood, K. J. Livak, J. Marmaro, R. Knorr, and C. Batt. 1995. Use of fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl. Environ.Microbiol. 61:3724-3728.Google Scholar
  3. Baum, D. H., D. L. Harris, B. Nielsen, P. J. Fedorka-Cray, and K. Steckleberg. 1996. Comparison of serology and culture for detecting Salmonella infection of 5 to 7 month old swine [Online]. Iowa State University swine research report. URL: http://www.extension.iastate.edu/pages/ansci/swinereports/asl-14O7.pdf(Accessed: June 18, 2002).Google Scholar
  4. Beuchat, L. R. 1985. Efficacy of media and methods for detecting and enumerating Campylobacter jejuni in refrigerated chicken meat. Appl. Environ. Microbiol. 50:934-939.Google Scholar
  5. Boyapalle, S., S. Kanuganti, I. V. Wesley, and P. G. Reddy. 1999. Comparison of a multiplex and 5' nuclease PCR assays for the rapid detection of pathogenic Yersinia enterocoliticain swine and pork products [Online]. Iowa State University Swine Research Report. URL: http:// www.extension.iastate.edu/ipic/reports/99swinereports/asl-1705.pdf(Accessed: June 18, 2002).Google Scholar
  6. Buswell, C. M, Y. M. Herlihy, L. M. Lawrence, J. T. M. McGuiggan, P. D. Marsh, C. W. Keevil, and S. A. Leach. 1998. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and—rRNA staining. Appl. Environ. Microbiol. 64:733-741.Google Scholar
  7. Campbell, A. T., L. J. Robertson, and H. V. Smith. 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl. Environ. Microbiol. 58:3488-3493.Google Scholar
  8. Carreno, R. A., N. J. Pokorny, S. C. Weir, H. Lee, and J. T. Trevors. 2001. Decrease in Cryptosporidium parvum oocyst infectivity in vitro by using the membrane filter dissolution method for recovering oocysts from water samples. Appl. Environ. Microbiol. 67:3309-3313.CrossRefGoogle Scholar
  9. Chen, S., A. Yee, M. Griffiths, C. Larkin, C. T. Yamashiro, R. Behari, C. Paszko-Kolva, K. Rahn, and S. A. DeGrandis. 1997. The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonellaspecies in food commodities. Int. J. Food Microbiol. 35:239-250.CrossRefGoogle Scholar
  10. Crook, J., R. S. Engelbrecht, M. M. Benjamin, R. J. Bull, B. A. Fowler, H. E. Griffin, C. N. Haas, C. L. Moe, J. B. Rose, and R. R Trussell. 1998. The viability of augmenting drinking water supplies with reclaimed water. In: D. A. Dobbs (ed.). Issues in Potable Reuse. National Academy Press, Washington, D. C. pp. 121.Google Scholar
  11. Davies, P. R., J. A. Funk, M. G. Nichols, J. M. O'Carroll, P. K. Turkson, W. A. Gebreyes, S. Ladely, and P. J. Fedorka-Cray. 1999. Effects of methodologic factors on detection of Salmonellain swine feces [Online]. Proceedings of the 3rd international symposium on the epidemiology and control of Salmonella in pork, August 5-7, 1999, Washington D. C. URL: http://www.isecsp99.org (Accessed: June 18, 2002).Google Scholar
  12. Davies, P. R., P. K. Turkson, J. A. Funk, M. A. Nichols, S. R. Ladely, P. J. Fedorka-Cray. 2000. Comparison of methods for isolating Salmonella bacteria from feces of naturally infected pigs. J. Appl. Microbiol. 89:69-177.Google Scholar
  13. Faulkner, B., R. Thurman, A. Champion, and D. Veal. 2000. Detecting protozoa in water: a comparison of methods [Online]. URL: http://www.eidn.com.au/ausgermproiect2.htm (Accessed: July 2, 2002).Google Scholar
  14. Friedlander Jr., B. P. 2002. CU-developed sensor to speed detection of food-borne pathogens [Online]. Cornell Chronicle. URL: http://www.news.cornelI.edU/chronicle/02/3.28.02/ detect-pathogens.html (Accessed: June 18, 2002).Google Scholar
  15. Holland, J. L., L. Louie, A. E. Simor, and M. Louie. 2000. PCR detection of Escherichia coli Ol57:H7 directly from stools: evaluation of commercial extraction methods for purifying fecal DNA. J. Clin. Microbiol. 38:4108-4113.Google Scholar
  16. Isaacson, R. E. 2000. Stealth Salmonella: problems for detecting Salmonella positive animals [Online]. A workshop on epidemiologic methods and approaches for food safety, October 18-19, 2000, Birmingham, Alabama. URL: http://vbms.unl.edu/wills/epiconf/text/4%20isaacson.pdf (Accessed: June 18, 2002).Google Scholar
  17. Isaacson, R. E., R. M. Weigel, L. D. Firkins, and Bahnson, P. 1999. The effect of feed withdrawal on the shedding of Salmonella Typhimurium by swine [Online]. Proceedings of the 3rd international symposium on the epidemiology and control of Salmonella in pork, August 5-7, 1999, Washington D. C. URL:http://www.isecsp99.org (Accessed: June 18, 2002).Google Scholar
  18. Kaucner, C., and T. Stinear. 1998. Sensitive and rapid detection of viable Giardia cysts and Cryptosporidium oocysts in large-volume water samples with wound fibreglass cartridge filters and reverse transcription-PCR. Appl. Environ. Microbiol. 64:1743-1749.Google Scholar
  19. Kehl, K. S., P. Havens, C. E. Behnke, and D. W. K. Acheson. 1997. Evaluation of the premier EHEC assay for detection of shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 35:2051-2054.Google Scholar
  20. Kruger, P., A. Wiedenmann, and K. Botzenhart. 1998. Detection of Cryptosporidiumoocysts in water: comparison of the conventional microscopic immunofluorescence method with PCR and TaqMan PCR [Online]. OECD workshop Interlaken '98 on molecular technologies for safe drinking water. URL: http://www.eawag.ch/publications_e/proceedings/oecd/proceedings/ Kmeger.pdf(Accessed: July 2, 2002).Google Scholar
  21. Lilja, L., and M-L. Hanninen. 2001. Evaluation of a commercial automated ELISA and PCR-method for rapid detection and identification of Campylobacter jejuni and C. coli in poultry products. Food Microbiol. 18:205-209.CrossRefGoogle Scholar
  22. Louie, M., S. Read, A. E. Simor, J. Holland, L. Louie, K. Ziebell, J. Brunton, and J. Hii. 1998. Application of multiplex PCR for detection of non-Ol57 verocytotoxin-producing Escherichia coli in bloody stools: identification of serogroups O26 and O111. J. Clin. Microbiol. 36:3375-3377.Google Scholar
  23. Lu, P., B. W. Brooks, R. H. Robertson, K. H. Nielsen, and M. M. Garcia. 1997. Characterization of monoclonal antibodies for the rapid detection of foodborne Campylobacters. Int. J. Food Microbiol. 37:87-91.CrossRefGoogle Scholar
  24. McClellan, P. 1998. Cryptosporidium and Giardia—a picture of uncertainty [Online]. In: Assessment of the contamination events and future directions for the management of the catchment. URL: http://water.sesep.drexel.edu/outbreaks/Sydnev_rpt3Ch2.pdf (Accessed: July 2, 2002).Google Scholar
  25. Neumann, N. F., L. L. Gyurek, L. Gammie, G. R. Finch, and M. Belosevic. 2000. Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvumviability in water. Appl. Environ. Microbiol. 66:406-412.CrossRefGoogle Scholar
  26. Nielsen, B., D. Baggesen, F. Bager, J. Haugegaard, and P. Lind. 1995. The serological response to Salmonella serovars typhimurium and infantis in experimentally infected pigs-the time course followed with an indirect anti-LPS ELISA and bacteriological examinations. (Abs.) Vet. Microbiol. 47:205-218.CrossRefGoogle Scholar
  27. Novicki, T. J., J. A. Daly, S. L. Mottice, and K. C. Carroll. 2000. Comparison of sorbitol MacConkey agar and a two-step method which utilizes enzyme-linked immunosorbent assay toxin testing and a chromogenic agar to detect and isolate enterohemorrhagic Escherichia coli. J. Clin. Microbiol. 38:547-551.Google Scholar
  28. Oberst, R. D., M. P. Hays, L. K. Bohra, R. K. Phebus, C. T. Yamashiro, C. Paszko-Kolva, S. J. A. Flood, J. M. Sargeant, and J. R. Gillespie. 1998. PCR-based DNA amplification and presumptive detection of Escherichia coli Ol57:H7 with an internal fluorogenic probe and the 5' nuclease TaqMan assay. Appl. Environ. Microbiol. 64:3389-3396.Google Scholar
  29. O'Toole, J., and C. Kaucner. 1998. Monitoring drinking water supplies for protozoan pathogens [Online]. 61st annual water industry engineers and operators' conference, September 2-3,1998, Shepparton. URL: http://www.awwoa.org.au/conf_papers/1998/pdf/02_Christine_Kaucner.pdf(Accessed: July 2, 2002).Google Scholar
  30. Quintero-Betancourt, W., E. R. Peele, and J. B. Rose. 2002. Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. (Abs.) J. Microbiol. Methods, 49:209-224.CrossRefGoogle Scholar
  31. Park, C. H., N. M. Vandel, and D. L. Hixon. 1996. Rapid immunoassay for detection of Escherichia coli 0157 directly from stool specimens. J. Clin. Microbiol. 34:988-990.Google Scholar
  32. Potter, M., and IFT expert report panelists. 2002. Emerging microbiological food safety issues: implications for control in the 21st century [Online]. IFT Expert Report. URL: http://www.ift.org (Accessed: February 25, 2002).Google Scholar
  33. Rajic, A., and J. Keenliside. 2001. Salmonella in swine [Online]. Bacon Bits, vol. X, February 2001. URL: http://www.agric.gov.ab.ca/livestock/pork/baconbits/0102.pdf (Accessed: June 19, 2002).Google Scholar
  34. Rautelin, H., J. Jusufovic, and M-L. Hanninen. 1999. Identification of hippurate-negative thermophilic Campylobacters. (Abs.) Diagn. Microbiol. Infect. Dis. 35:9-12.CrossRefGoogle Scholar
  35. Reynolds, K. A., C. P. Gerba, and I. L. Pepper. 1996. Detection of infectious enteroviruses by an integrated cell culture-PCR procedure. Appl. Environ. Microbiol. 62:1424-1427.Google Scholar
  36. Rochelle, P. A., D. M. Ferguson, T. J. Handojo, R. de Leon, M. H. Stewart, and R. L. Wolfe. 1997. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum. Appl. Environ. Microbiol. 63:2029-2037.Google Scholar
  37. Scotter, S. L., T. J. Humphrey, and A. Henley. 1993. Methods for the detection of thermotolerant Campylobacters in foods: results of an inter-laboratory study. J. Appl. Bacteriol. 74:155-163.CrossRefGoogle Scholar
  38. Spier, S. J., B. P. Smith, J. W. Tyler, J. S. Cullor, G. W. Dilling, and L. D. Pfaff. 1990. Use of an ELISA for detection of immunoglobulins G and M that recognize SalmonellaDublin lipopolysaccharides for prediction of carrier status in cattle. Am. J. Vet. Res. 51:1900-1904.Google Scholar
  39. Stern, N. J., and J. E. Line. 1992. Comparison of three methods for recovery of Campylobacter spp. from broiler carcasses. J. Food Protect. 55:663-666.Google Scholar
  40. Sutcliffe, E. M., D. M. Jones, and A. D. Pearson. 1991. Latex agglutination for the detection of Campylobacter species in water. Lett. Appl. Microbiol. 12:72-74.CrossRefGoogle Scholar
  41. Uyeda, J., K. Harmon, and I. Wesley. 1996. A PCR ELISA method for the detection of Yersinia enterocolitis [Online]. Iowa State University Swine Research Report. URL: http:// www.extension.iastate.edu/Pages/ansci/swinereports/asl-1419.pdf (Accessed: June 18, 2002).Google Scholar
  42. Uyttendaele, M., A. Bastiaansen, and J. Debevere. 1997. Evaluation of the NASBA® nucleic acid amplification system for assessment of the viability of Campylobacter jejuni. Int. J. Food Microbiol. 37:13-20.CrossRefGoogle Scholar
  43. Uyttendaele, M., R. Schukkink, B. van Gemen, and J. Debevere. 1994. Identification of Campylobacter jejuni, Campylobacter coli and Campylobacter lari by the nucleic acid amplification system NASBA®. J. Appl. Bacteriol. 77:694-701.CrossRefGoogle Scholar
  44. Uyttendaele, M., R. Schukkink, B. van Gemen, and J. Debevere. 1996. Comparison of the nucleic acid amplification system NASBA® and agar isolation for detection of pathogenic Campylobacters in naturally contaminated poultry. J. Food Protect. 59: 683-687.Google Scholar
  45. Van Zijderveld, F. G., A. M. van Zijderveld-van Bemmel, and J. Ankotta. 1992. Comparison of four different enzyme linked immunosorbent assays for serological diagnosis of Salmonella Enteritidis infections in experimentally infected chickens. J. Clin. Microbiol. 30:2560-2566.Google Scholar
  46. Veal, D. 2000. Detection of Cryptosporidium oocysts and Giardia cysts in water [Online]. URL: http://www.bio.mq.edu.au/flowgrid/root/current-research/methods/methods.html(Accessed: July 2, 2002).Google Scholar
  47. Waltman, W. D., and E. T. Mallinson. 1995. Isolation of Salmonella from poultry tissue and environmental samples: a nationwide survey. (Abs.) Avian Dis. 39:45-54.CrossRefGoogle Scholar
  48. Waage, A. S., T. Vardund, V. Lund, and G. Kapperud. 1999. Detection of small numbers of Campylobacter jejuni and C. coli cells in environmental water, sewage, and food samples by a seminested PCR assay. Appl. Environ. Microbiol. 65:1636-1643.Google Scholar
  49. Wang, H., E. Boyle, and J. Farber. 2000. Rapid and specific enzyme immunoassay on hydrophobic grid membrane filter for detection and enumeration of thermophilic Campylobacter spp. from milk and chicken rinses. J. Food Protect. 63:489-494.Google Scholar
  50. Wesley, I. V., S. C. Johnson, and W. Cray. 1997. Detection of Yersinia enterocolitica in pigs and pork products. Iowa State University Swine Research Report. URL: http:// www.extension.iastate.edu/pages/ansci/swinereports/asl-1506.pdf (Accessed: June 18, 2002).Google Scholar
  51. Wolfaardt, M., C. L. Moe, and W. O. K. Grabow. 1995. Detection of small round structured viruses in clinical and environmental samples by polymerase chain reaction. (Abs.) Water Sci. Technol. 31:375-382.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Tiffany T. Y. Guan
    • 1
  • Richard A. Holley
    • 1
  1. 1.University of ManitobaWinnipeg

Personalised recommendations