Skip to main content

Transient Dynamics

  • Chapter

Part of the book series: Applied Optimization ((APOP,volume 46))

Abstract

In previous Chapters, the inverse problem has been studied based on static or harmonic elastodynamic excitation. In these approaches, application of the required loading for testing is not always easy (static loading), the efficiency of the procedure for a few test loadings is not sufficient (static loading) and nonlinear phenomena can not taken into account (harmonic elastodynamic modelling). The real time elastodynamic problem, which allows for the treatment of nonlinear effects, like the unilateral contact problems in cracks, is considered in this Chapter for inverse analysis tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antes, H. (1988). Anwendungen der Methode der Randelemente in der Elastodynamik and der Fluiddynamik. B.G. Teubner Verlag, Stuttgart.

    Book  MATH  Google Scholar 

  • Clark, C. and Canas, A. (1995). Spectral identification by artificial neural network and genetic algorithm. Int. J. Remote Sensing 16(12):2255–2275.

    Article  Google Scholar 

  • Dominguez, J. (1993). Boundary elements in dynamics. Computational Mechanics Publications and Elsevier Applied Science, Shouthampton and New York.

    MATH  Google Scholar 

  • Hirose, S. (1994). 2-d scattering by a crack with contact-boundary conditions. Wave Motion 19:37–49.

    Article  MATH  Google Scholar 

  • Homma, K. and Miyashita, T. (1995). Application of neural network to ultrasonic flaw detection in layered media. Transactions of the Japan Society of Mechanical Engineers 61 583A:569–574. in Japanese

    Google Scholar 

  • Kitahara, M., Achenbach, J., Guo, Q., Peterson, M., Notake, M., and Takadoya, M. (1992). Neural network for crack-depth determination from ultrasonic scattering. Review in Progress in Qualitative Nondestructive Evaluation 11:701–708.

    Article  Google Scholar 

  • Kitahara, M., Achenbach, J., Guo, Q., Peterson, M., Ogi, T., and Notake, M. (1991). Depth determination of surface-breaking cracks by a neural network. Review in Progress in Qualitative Nondestructive Evaluation 10:689–696.

    Google Scholar 

  • Nishimura, N. (1993). A boundary integral equation method for solving elastodynamic crack determination problems. In Kleinman, R., Angell, T., Colton, D., Santosa, I., and Stakgold, F., editors, Mathematical and Numerical Aspects of Wave Propagation pages Chap. 41, 390–397, Philadelphia. SIAM.

    Google Scholar 

  • Nishimura, N., Furukawa, A., and Kobayashi, S. (1992). Regularized boundary integral equations for an inverse problem of crack determination in time domain. In Kobayashi, S. and Nishimura, N., editors, Boundary Element Methods. Fundamentals and Applications pages 252–261, Berlin. Springer Verlag.

    Chapter  Google Scholar 

  • Oishi, A., Yamada, K., Yoshimura, A., and Yagawa, G. (1995). Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics. Computational Mechanics 15:521–533.

    Article  Google Scholar 

  • Philippidis, T., Nikolaidis, V., and Anastassopoulos, A. (1998). Damage detection of carbon/carbon laminates using neural network techniques on AE signals. NDT & E International 31(5):329–340.

    Article  Google Scholar 

  • Pratt, D. and Sansalone, M. (1992). Impact-echo signal interpretation using artificial intelligence. ACI Materials Journal 89(2):179–187.

    Google Scholar 

  • Sansalone, M. and Streett, M. (1997). The impact echo method. Bullbrier Press, Cornell.

    Google Scholar 

  • Song, S. and Schmerr(Jr.), L. (1991). Ultrasonic flow classification in weldments using neural networks. Review of Progress in Qualitative Nondestructive Evaluation, 10:697–704.

    Google Scholar 

  • Stavroulakis, G. E. (1999). Impact-echo from a unilateral interlayer crack. lcpbem modelling and neural identification. Engineering Fracture Mechanics 62(2–3):165–184.

    Article  Google Scholar 

  • Stavroulakis, G. E. and Abdalla, K. M. (1994). A systematic neural network classificator in mechanics. an application in semi-rigid steel joints. International Journal of Engineering Analysis and Design 1:279–292.

    Google Scholar 

  • Stavroulakis, G. E. and Antes, H. (1998). Crack detection in elastostatics and elastodynamics. a bem modelling - neural network approach. In Tanaka, M. and Dulikravich, G., editors, Inverse Problems in Engineering Mechanics. International Symposium on Inverse Problems in Engineering Mechanics 1998 (ISIP ‘88), pages 81–90, The Netherlands. Elsevier Science Ltd.

    Google Scholar 

  • Stavroulakis, G. E. and Antes, H. (1999). Nonlinear boundary equation approach for inequality 2-D elastodynamics. Engineering Analysis with Boundary Elements, 23(5–6):487–501.

    Article  MATH  Google Scholar 

  • Stavroulakis, G. E., Antes, H., and Panagiotopoulos, P. D. (1999). Transient elastodynamic s around cracks including contact and friction. Computer Methods in Applied Mechanics and Engineering 177(3/4):427–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Stephan, Y., Thiria, S., and Badran, F. (1996). Application of multilayered neural networks to ocean acoustic tomograpy inversions. Inverse Problems in Engineering, 3:281–304.

    Article  Google Scholar 

  • Takadoya, M., Notake, M., and Kitahara, M. (1993). Neural network approach to the inverse problem of crack-depth determination from ultrasonic backscattering data. In Tanaka, M. and Bui, H., editors, Inverse Problems in Engineering Mechanics Proc. IUTAM Symposium Tokyo 1992 pages 413–422, Berlin. Springer Verlag.

    Google Scholar 

  • Teh, C., Goh, A., and Jaritgam, S. (1997). Prediction of pile capacity using neural networks. ASCE Journal of Computing in Civil Engineering, 11(2):129–138.

    Article  Google Scholar 

  • Thavasimuthu, M., Rajogopalan, C., Kalyanasundaram, P., and Raj, B. (1996). Improving the evaluation sensitivity of an ultrasonic pulse echo technique using a neural network classifier. NDT and E International 29(3):175–179.

    Article  Google Scholar 

  • Williams, T. and Cucunski, N. (1995). Neural networkds for backcalculation of moduli from SASW test. ASCE Journal of Computing in Civil Engineering 9(1):1–8.

    Article  Google Scholar 

  • Yagawa, G. and Okuda, H. (1996). Neural networks in computational mechanics. Archives of Computational Methods in Engineering 3(4):435–512.

    Article  Google Scholar 

  • Yuki, H. and Homma, K. (1996). Estimation of acoustic emission source waveform of fracture using a neural network. NDT & E International 29(1):21–25.

    Article  Google Scholar 

  • Zeng, P. (1998). Neural computing in mechanics. ASME Applied Mechanics Reviews 51(2):173–197.

    Article  Google Scholar 

  • Zgonc, K. and Achenbach, J. (1996). A neural network for crack sizing trained by finite element calculations. NDT and E International 29(3):147–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stavroulakis, G.E. (2001). Transient Dynamics. In: Inverse and Crack Identification Problems in Engineering Mechanics. Applied Optimization, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0019-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0019-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4888-7

  • Online ISBN: 978-1-4615-0019-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics