Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 46))

  • 356 Accesses

Abstract

Neural networks, genetic algorithms, fuzzy inference and filtering techniques are increasingly being used for the solution of identification and inverse problems. Their success lies in the fact that they have the potential to overcome certain problems due to ill-conditioning or scaling, nonconvexity and nondifferentiability, as they arise in the considered applications and as they have been discussed in the previous Chapters. All these methods are known as soft computing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, K. and Stavroulakis, G. (1995). A back-propagation neural network model for semi-rigid steel connections based on experimental data. Microcomputers in Civil Engineering, 10(2):77–87.

    Article  Google Scholar 

  • Adeli, H. and Kumar, S. (1995). Distributed genetic algorithm for structural optimization. ASCE Journal of Aerospace Engineering, 8(3):156–163.

    Article  Google Scholar 

  • Anderson, D., Hines, E., Arthur, A., and Eiap, E. (1993). Application of artificial neural networks to prediction of minor axis steel connections. In Topping, B. and A.I.Khan, editors, Neural networks and combinatorial optimization in civil and structural engineering. Civil-Comp Ltd Press.

    Google Scholar 

  • Annicchiarico, W. and Cerrolaza, M. (1997). Structural shape optimization using genetic algorithms. In M. Marchetti, C. B. and Aliabadi, M., editors, Boundary Elements XIX, pages 399–408, Southampton. Computational Mechanics Publications.

    Google Scholar 

  • Aoki, S., Amaya, K., Sahashi, M., and Nakamura, T. (1997). Identification of Gurson’s material constants by using Kalman filter. Computational Mechanics, 19:501–506.

    Article  MATH  Google Scholar 

  • Avdelas, A. V., Panagiotopoulos, P. D., and Kortesis, S. (1995). Neural networks for computing in elastoplastic analysis of structures. Meccanica, 30:1–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Berke, L. and Hajela, P. (1992). Applications of artificial neural nets in structural mechanics. Structural Optimization, 4:90–98.

    Article  Google Scholar 

  • Bittanti, S., Maier, G., and Nappi, A. (1984). Inverse problems in structural elastoplasticity: A Kalman filter approach. In Sawczuk, A. and Bianchi, G., editors, Plasticity Today. Modelling, Methods and Applications, pages 311–329, London and New York. Elsevier Applied Science Publishers.

    Google Scholar 

  • Brause, R. (1991). Neuronale Netze. B.G. Teubner, Stuttgart.

    Book  MATH  Google Scholar 

  • Carroll, D. (1996a). Chemical laser modeling with genetic algorithms. AIAA Journal, 34(2):338–346.

    Article  Google Scholar 

  • Carroll, D. (1996b). Genetic algorithms and optimizing chemical oxygen-iodine lasers. In Wilson, H., Batra, R., Bert, C., Davis, A., Schapery, R., Stewart, D., and Swinson, F., editors, Developments in Theoretical and Applied Mechanics Vol. XVIII, pages 411–424, Alabama, USA. The Univeristy of Alabama.

    Google Scholar 

  • Catlin, D. (1989). Estimation, control and the discrete Kalman filter. Springer Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Caudill, M. and Butler, C. (1990). Naturally intelligent systems. MIT Press, Cambridge MA.

    Google Scholar 

  • Chen, T.-F., Lin, S., and Wang, J. (1996). An application of Kalman filter and finite difference scheme to inverse heat conduction problems. Inverse Problems in Engineering, 3(1–3):163–176.

    Article  Google Scholar 

  • Cichocki, A. and Unbehauen, R. (1993). Neural networks for optimization and signal processing. J. Wiley and Sons and Teubner, Chichester — Stuttgart.

    Google Scholar 

  • Cividini, A., Maier, G., and Nappi, A. (1983). Parameter estimation of a static geotechnical model using a Bayes’ approach. Int. J. of Rock Mechanics and Mining Science, 20:215–226.

    Article  Google Scholar 

  • Demuth, H. and Beale, M. (1994). Neural networks toolbox for use with MAT-LAB. The Mathworks Inc., MA.

    Google Scholar 

  • Doyle, J. (1994). A genetic algorithm for determining the location of structural impacts. Experimental Mechanics, pages 37–44.

    Google Scholar 

  • Ferravesi, M., Torini, E., and Vignoli, R. (1996). A solution to the inverse problem in groundwater hydrology based on Kalman filtering. Journal of Hydrology, 175(1–4):567–582.

    Article  Google Scholar 

  • Freeman, J. and Skapura, D. (1991). Neural networks: Algorithms, applications and programming techniques. Addison-Wesley Publ. Co., Int.

    MATH  Google Scholar 

  • Ghaboussi, J., Jr, J. G., and Wu, X. (1991). Knowledge-based modelling of material behaviour with neural networks. Journal of Engineering Mechanics ASCE, 117(1).

    Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Addison—Wesley Publ., Reading, Massachussets etc.

    Google Scholar 

  • Grierson, D. and Pak, W. (1993). Optimal sizing, geometrical and topological

    Google Scholar 

  • design using a genetic algorithm. Structural Optimization, 6:151–159. Hajela, P. (1990). Genetic search. an approach to the nonconvex optimization

    Google Scholar 

  • problem. AMA Journal, 28:1205–1210.

    Google Scholar 

  • Harrouni, K. E., Ouazar, D., Wrobel, L., and Cheng, A. H.-D. (1997). Aquifer parameter estimation by extended Kalman filtering and boundary elements. Engineering Analysis with Boundary Elements, 19:231–237.

    Article  Google Scholar 

  • Hartmann, C. (1996). “Simulierte Evolution: Ein Lösungsansatzfür Formfindungsprobleme? (Doktorarbeit). Technische Universität, München Germany.

    Google Scholar 

  • Haslinger, J. and Jedelskÿ, D. (1996). Genetic algorithms and fictitious domain based approaches in shape optimization. Structural Optimization, 12:257–264.

    Article  Google Scholar 

  • Huang, M. W. and Arora, J. S. (1997). Optimal design with discrete vaariables: some numerical experiments. Intern. Journal for Numerical Methods in Engineering, 40:165–188.

    Article  Google Scholar 

  • Jang, J.-S. (1993). ANFIS: adaptive-Network-based Fuzzy Inference Systems.

    Google Scholar 

  • IEEE Transactions on Systems, Man and Cybernetics, 23(3):665–685. Kalman, R. (1960). A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Engineering, 82D:35–45.

    Google Scholar 

  • Kalman, R. and Bucy, R. (1961). New results in linear filtering and prediction theory. Trans. ASME J. Basic Engineering, 83D:95–108.

    Article  MathSciNet  Google Scholar 

  • Kannal, L. and Doyle, J. (1997). Combining spectral super-elements, genetic algorithms, and massive parallelism for computationally efficient flaw detection in complex structures. Computational Mechanics, 20:67–74.

    Article  MATH  Google Scholar 

  • Lou, K.-N. and Perez, R. (1996). A new system identification technique using Kalman filtering and multilayer neural networks. Artificial Intelligence in Engineering, 10:1–8.

    Article  Google Scholar 

  • Maier, G., Nappi, A., and Cividini, A. (1982). Statistical identification of yield limits in piecewiselinear structural models. In Keramidas, G. and Brebbia, C., editors, Proc. Int. Conf on Computational Methods and Experimental Measurements, pages 812–829, Berlin. Springer Verlag.

    Google Scholar 

  • Murakami, A. and Hasegawa, T. (1993). Inverse problem approach based on the Kalman filtering and ist applications. In Tanaka, M. and Bui, H., editors, IUTAM Conference on Inverse Problems in Engineering Mechanics, Tokyo 1992, pages 529–538, Berlin. Springer Verlag.

    Google Scholar 

  • Rajeev, S. and Krishnamoorhty, C. (1992). Discrete optimization of structures using genetic algorithms. ASCE J. of Structural Engineering, 118(5):1233–1250.

    Article  Google Scholar 

  • Rajeev, S. and Krishnamoorthy, C. (1997). Genetic algorithms based methodologies for design optimization of trusses. ASCE J. of Structural Engineering, 123(3):350–358.

    Article  Google Scholar 

  • Riche, R. L. and Haftka, R. (1993). Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AMA Journal, 31(5):951–956.

    MATH  Google Scholar 

  • Rumelhart, D. and McClelland, J. (1986). Parallel distributed processing Vols. I, II, III. The MIT Press, Cambridge MA.

    Google Scholar 

  • Scarpa, F. and Milano, G. (1995). Kalman smoothing technique applied to the inverse heat conduction problem. Numerical Heat Transfer B, 28(1):79–96.

    Article  Google Scholar 

  • Tanaka, M., Matsumoto, T., and Oida, S. (1998). Identification of unknown boundary shape of rotationally symmetric body in steady heat conduction via BEM and filter theories. In Tanaka, M. and Dulikravich, G., editors, Inverse problems in engineering mechanics, pages 121–130. Elsevier Science.

    Google Scholar 

  • Tanaka, M., Matsumoto, T., and Sakamoto, K. (1999). Noise source identification of a railway car model by the boundary element method using sound

    Google Scholar 

  • pressure measurements in 2-D infinite half space. In Proc. of the 3 rd Int. Conference on Inverse Problems in Engineering. June 13–18, 1999, Port Ludlow, Washington, USA (to appear).

    Google Scholar 

  • Theocaris, P. S. and Panagiotopoulos, P. D. (1993). Neural networks for computing in fracture mechanics. Methods and prospects of applications. Computer Methods in Applied Mechanics and Engineering, 106:213–228.

    Article  MATH  Google Scholar 

  • Theocaris, P. S. and Panagiotopoulos, P. D. (1995). Plasticity including the Bauschinger effect, studied by a neural network approach. Acta Mechanica, 113:63–75.

    Article  MathSciNet  MATH  Google Scholar 

  • Tosaka, N., Utani, A., and Takahashi, H. (1995). Unknown defect identification in elastic field by boundary element method with filtering procedure. Engineering Analysis with Boundary Elements, 15:207–215.

    Article  Google Scholar 

  • Tuan, P.-C., Fong, L.-W., and Huang, W.-T. (1997). Application of kalman filtering with input estimation technique to on-line cylindrical inverse heat conduction problems. JSME International Journal, Serie B, 40(1):126–133.

    Article  Google Scholar 

  • Utani, A. and Tosaka, N. (1993). Identification alayisis of distributed-parameter systems by using Kalman filter-boundary element method. In Tanaka, M. and Bui, H., editors, IUTAM Conference on Inverse Problems in Engineering Mechanics, Tokyo 1992, pages 347–356, Berlin. Springer Verlag.

    Google Scholar 

  • Vanluchene, R. D. and Roufei, S. (1990). Neural networks in structural engineering. Microcomputers in Civil Engineering, 5:207–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stavroulakis, G.E. (2001). Selected Soft Computing Tools. In: Inverse and Crack Identification Problems in Engineering Mechanics. Applied Optimization, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0019-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0019-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4888-7

  • Online ISBN: 978-1-4615-0019-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics