Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 46))

  • 357 Accesses

Abstract

Optimization deals with the determination of the extremum or the extrema of a given function over the space where the function is defined or over a subset of it. Several optimization problems arise in nature and they are known, mainly for historical reasons, as principles. The principles of minimum potential energy in statics, the maximum dissipation principle in dissipative media and the least action principle in dynamics are some examples (see, among others, [Hamel, 1949], [Lippmann, 1972], [Cohn and Maier, 1979], [de Freitas, 1984], [de Freitas and Smith, 1985], [Panagiotopoulos, 1985], [Hartmann, 1985], [Sewell, 1987], [Bazant and Cedolin, 1991]). Furthermore, mathematical optimization is tightly connected with optimal structural design, control and identification. Applications include contemporary questions in biomechanics, like the understanding of the inner structure in bones [Wainwright and et.al., 1982] or of the shape in trees [Mattheck, 1997].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubin, J. P. (1993). Optima and equilibria Springer Verlag, Berlin.

    Google Scholar 

  • Aubin, P. and Frankowska, H. (1991). Set—valued analysis Birkhäuser, Berlin-Heidelberg.

    Google Scholar 

  • Baiant, Z. P. and Cedolin, L. (1991). Stability of structures. Elastic, inelastic, fracture and damage theories Oxford University Press, New York, Oxford.

    Google Scholar 

  • Bertsekas, D. P. (1982). Constrained optimization and Lagrange multiplier methods Academic Press, New York.

    Google Scholar 

  • Bolzon, G., Ghilotti, D., and Maier, G. (1997). Parameter identification of the cohesive crack model. In Sol, H. and Oomens, C., editors, Material identification using mixed numerical experimental methods, pages 213-222, Dordrecht. Kluwer Academic Publishers.

    Google Scholar 

  • Brousse, P. (1991). Optimization in mechanics: problems and methods Elsevier Science Publications, Amsterdam.

    Google Scholar 

  • Ciarlet, P. G. (1989). Introduction to numerical linear algebra and optimization Cambridge University Press, Cambridge.

    Google Scholar 

  • Clarke, F. H. (1983). Optimization and nonsmooth analysis J. Wiley, New York.

    Google Scholar 

  • Cohn, M. Z. and Maier, G., editors (1979). Engineering plasticity by mathematical programming Pergamon Press, Oxford.

    Google Scholar 

  • Cottle, R. W., Pang, J. S., and Stone, R. E. (1992). The linear complementarity problem Academic Press, Boston.

    Google Scholar 

  • de Freitas, J. A. T. (1984). A general methodology for nonlinear structuralanalysis by mathematical programming. Engineering Structures, 6:52–60.

    Article  Google Scholar 

  • de Freitas, J. A. T. and Smith, D. L. (1985). Energy theorems for elastoplastic structures in a regime of large displacements. J. de mecanique theorique et ppliqee, 4(6):769-784.

    MATH  Google Scholar 

  • Dem’ yanov, V. F. and Rubinov, A. M. (1995). Introduction to constructive nonsmooth analysis Peter Lang Verlag, Frankfurt-Bern-New York.

    Google Scholar 

  • Dem’yanov, V. F., Stavroulakis, G. E., Polyakova, L. N., and Panagiotopoulos, P. D. (1996) Quasidifferentiability and nonsmooth modelling in mechanics, engineering and economics. Kluwer Academic, Dordrecht

    Book  MATH  Google Scholar 

  • Dem’yanov, V. F. and Vasiliev, L. N. (1985) Nondifferentiable optimization. Optimization Software, New York

    Book  Google Scholar 

  • Ekeland, I. and Temam, R. (1976) Convex analysis and variational problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Elster, K.-H., Reinhardt, R., Schäuble, M., and Donath, G. (1977). Einführung in die nichtlineare Optimierung BSB B.G. Teubner Verlagsgesellschaft, Leipzig.

    Google Scholar 

  • Facchinei, F., Jiang, H., and Qi, L. (1999). A smoothing method for mathematical programs with equilibrium constraints. Mathematical Programming, 85:107-134.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferris, M. and Tin-Loi, F. (1999). On the solution of a minimum weight elastoplastic problem involving displacement and complementarity constraints.Computer Methods in Applied Mechanics and Engineering, 174:107–120.

    Article  MATH  Google Scholar 

  • Fletcher, R. (1990). Practical methods of optimization J. Wiley, Chichester. Friedman, A. (1982). Variational principles and free boundary problems. JWiley, New York.

    Google Scholar 

  • Galka, A. and Telega, J. (1995). Duality and the complementary energy principle for a class of nonlinear structures. part is Five-parameter shell model. part ii: Anomalous dual variational principles for compressed elastic beams. Archives of Mechanics, 47(4):677–724.

    Google Scholar 

  • Gao, D. (1998). Duality, triality and complementary extremum principles in non-convex parametric variational problems with applications IMA Journal of Applied Mathematics, 61(3):199–236

    Article  MathSciNet  MATH  Google Scholar 

  • Giannessi, F., Jurina, L., and Maier, G. (1978). Optimal excavation profile or a pipeline freely resting on a sea floor. In 4 Congresso Nationale di Meccanica Teorica ed Applicata, pages 281–296 AIMETA.

    Google Scholar 

  • Giannessi, F., Jurina, L., and Maier, G. (1982). A quadratic complementarity problem related to the optimal design of a pipeline freely resting on a rough sea bottom. Engineering Structures, 4:186–196.

    Google Scholar 

  • Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical optimization Academic Press, New York.

    Google Scholar 

  • Givoli, D. (1999). A direct approach to the finite element solution of elliptic optimal control problems Numerical Methods for Partial Differential Equations, 15(3):371–388

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel, G. (1949). Theoretische Mechanik Springer Verlag, Berlin. Hartmann, F. (1985). The mathematical foundation of structural mechanics Springer Verlag, Berlin.

    Google Scholar 

  • Haslinger, J., Miettinen, M., and Panagiotopoulos, P. (1999). Finite Element Approximation of Hemivariational Inequalities: Theory, Numerical Methods and Applications Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Haslinger, J. and Neittaanmäki, P. (1996). Finite element approximation for optimal shape, material and topology design J. Wiley and Sons, Chichester. (2nd edition).

    Google Scholar 

  • Hilding, D., Klarbring, A., and Pang, J.-S. (1999a) Minimization of maximum unilateral force. Computer Methods in Applied Mechanics and Engineering, 177:215–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Hilding, D., Klarbring, A., and Petersson, J. (1999b). Optimization of structures in unilateral contact. ASME Applied Mechanics Review, 52(4):139–160.

    Article  Google Scholar 

  • Hiriart-Urruty, J. B. and Lemaréchal, C. (1993). Convex analysis and minimization algorithms I Springer, Berlin-Heidelberg.

    Google Scholar 

  • Hlavaèek, I., Haslinger, J., Necas, J., and Lovisek, J. (1988). Solution of variational inequalities in mechanics, volume 66 of Appl. Math. Sci Springer.

    Google Scholar 

  • Kiwiel, K. C. (1985). Methods of descent for nondifferentiable optimizationSpringer, Berlin. Lecture notes in mathematics No. 1133.

    Google Scholar 

  • Kornhuber, R. (1997). Adaptive monotone multigrid methods for nonlinear variational problems B.G. Teubner, Stuttgart.

    Google Scholar 

  • Lippmann, H. (1972). Extremum and variational principles in mechanics Springer CISM Courses and Lectures 54, Wien.

    Google Scholar 

  • Luo, Z. Q., Pang, J. S., and Ralph, D. (1996). Mathematical programs with equilibrium constraints Cambridge University Press, Cambridge.

    Google Scholar 

  • Maier, G. (1982). Inverse problem in engineering plasticity: a quadratic programming approach. Accademia Nazionale die Lincei, Serie VII Volume LXX:203–209.

    Google Scholar 

  • Maier, G., Giannessi, F., and Nappi, A. (1982). Indirect identification of yield limits by mathematical programming. Engineering Structures, 4:86-99.

    Article  Google Scholar 

  • Mattheck, C. (1997). Design in der Natur: der Baum als Lehrmeister Rombach,Freiburg im Breisgau.

    Google Scholar 

  • Matthies, H. G., Strang, G., and Christiansen, E. (1979). The saddle point of a differential problem. In Glowinski, R., Rodin, E., and Zienkiewicz, O., editors, Energy methods in finite element analysis, New York. J. Wiley and Sons.

    Google Scholar 

  • Migdalas, A., Pardalos, P., and Värbrand, P. (1997). Multilevel optimization:algorithms and applications Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Mistakidis, E. and Stavroulakis, G. (1998). Nonconvex optimization in mechanics. Algorithms, heuristics and engineering applications by the F.E.M Kluwer Academic, Dordrecht and Boston and London.

    Google Scholar 

  • Moreau, J. J. (1963). Fonctionnelles sous - différentiables. C R Acad. Sc. Paris, 257A:4117–4119.

    Google Scholar 

  • Murty, K. G. (1988). Linear complementarity, linear and nonlinear programming Heldermann, Berlin.

    Google Scholar 

  • Neittaanmäki, P., Rudnicki, M., and Savini, A. (1996). Inverse problems and optimal design in electricity and magnetism Oxford University Press, New York.

    Google Scholar 

  • Oden, J. T. and Reddy, J. N. (1982). Variational methods in theoretical mechanics Springer Verlag, Berlin.

    Google Scholar 

  • Outrata, J., Kocvara, M., and Zowe, J. (1998). Nonsmooth approach to optimization problems with equilibrium constraints: theory, applications, and numerical results Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Panagiotopoulos, P. D. (1985). Inequality problems in mechanics and applications. Convex and nonconvex energy functions Birkhäuser, Basel - Boston - Stuttgart. Russian translation, MIR Publ., Moscow 1988.

    Google Scholar 

  • Panagiotopoulos, P. D. (1993). Hemivariational inequalities. Applications inmechanics and engineering Springer, Berlin —Heidelberg —NewYork.

    Google Scholar 

  • Rockafellar, R. T. (1970). Convex analysis Princeton University Press, Princeton.

    Google Scholar 

  • Rockafellar, R. T. (1982). Network flows and monotropic optimization J. Wiley, New York.

    Google Scholar 

  • Rodrigues, J. F. (1987). Obstacle problems in mathematical physics North Holland, Amsterdam.

    Google Scholar 

  • Schramm, H. and Zowe, J. (1992). A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optimization, 2:121–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Sewell, N. J. (1987). Maximum and minimum principles. A unified approach with applications Cambridge University Press, Cambridge.

    Google Scholar 

  • Shimizu, K., Ishizuka, Y., and Bard, J. (1996). Nondifferentiable and two-level mathematical programming Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Shor, N. Z. (1985). Minimization methods fornondifferentiable functions Sprin—ger, Berlin.

    Google Scholar 

  • Stavroulakis, G. E. (1993). Convex decomposition for nonconvex energy problems in elastostatics and applications. European Journal of Mechanics A / Solids, 12(1):1–20.

    MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. (1995a). Optimal prestress of cracked unilateral structures: finite element analysis of an optimal control problem for variational inequalities. Computer Methods in Applied Mechanics and Engineering, 123:231–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Stavroulakis, G. E. (1995b). Optimal prestress of structures with frictional unilateral contact interfaces. Archives of Mechanics (Ing. Archiv), 66:71–81.

    Google Scholar 

  • Tin-Loi, B. (1999a). On the numerical solution of a class of unilateral contact structural optimization problems. Structural Optimization, 17:155–161.

    Google Scholar 

  • Tin-Loi, B. (1999b). A smoothing scheme for a minimum weight problem in structural plasticity. Structural Optimization, 17:279–285.

    Article  Google Scholar 

  • Wainwright, S. and et.al. (1982). Mechanical design in organisms Princeton University Press, Princeton New Jersey.

    Google Scholar 

  • Washizu, K. (1968).Variational methods in elasticity and plasticity Pergamon Press, Oxford.

    Google Scholar 

  • Womersley, R. S. and Fletcher, R. (1986). An algorithm for composite nonsmooth optimization problems. Journal of Optimization Theory and Applications, 48:493–523.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stavroulakis, G.E. (2001). Computational and Structural Optimization. In: Inverse and Crack Identification Problems in Engineering Mechanics. Applied Optimization, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0019-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0019-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4888-7

  • Online ISBN: 978-1-4615-0019-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics