Computational Mechanics

  • Georgios E. Stavroulakis
Part of the Applied Optimization book series (APOP, volume 46)


A systematic way for the derivation of variational principles in mechanics goes through the consideration of a potential energy or of a complementary energy function. The classical set of possibly nonlinear equations of mechanics from the one side, i.e., the compatibility equations, the equilibrium equations and the material laws, and, from the other side, the optimality conditions of the mathematical optimization theory are integrated in this approach. In fact, the governing relations of the problem either are taken into account in the derivation of the problem or they are produced from the optimality conditions of the associated energy optimization problem.


Variational Inequality Contact Problem Complementarity Problem Linear Complementarity Problem Variational Inequality Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adeli, H. and Park, H. (1998). Neurocomputing for design automation. CRC Press, Boca Raton Florida.Google Scholar
  2. Al-Fahed, A. M., Stavroulakis, G. E., and Panagiotopoulos, P. D. (1991). Hard and soft fingered robot grippers. Zeitschrift fuer Angew. Mathematik und Mechanik (ZAMM) 71(7/8):257–266.MathSciNetCrossRefMATHGoogle Scholar
  3. Alart, P. (1993). Critères d’ injectivité et de surjectivité pour certaines applications de Rn dans lui même. Application a la mécanique du contact. RAIRO Mod. Math. et An. Num. 27:203–222.MathSciNetMATHGoogle Scholar
  4. Alessandri, C. and Mallardo, V. (1999). Crack identification in two-dimensional unilateral contact mechanics with the boundary element method. Computational Mechanics 24(2):100–109.CrossRefMATHGoogle Scholar
  5. Antes, H. (1988). Anwendungen der Methode der Randelemente in der Elastodynamik und der Fluiddynamik. B.G. Teubner Verlag, Stuttgart.CrossRefMATHGoogle Scholar
  6. Antes, H. and Panagiotopoulos, P. D. (1992). The boundary integral approach to static and dynamic contact problems. Equality and inequality methods. Birkhäuser, Basel-Boston-Berlin.CrossRefMATHGoogle Scholar
  7. Antes, H., Steinfeld, B., and Tröndle, G. (1991). Recent developments in dynamic stress analyses by time domain BEM. Engineering Analysis with Boundary Elements 8(4):176–184.CrossRefGoogle Scholar
  8. Argyris, J. H. (1965). Continua and discontinua. In Proc. 1st Conf Matrix Meth. Struct. Mech. pages 66–80, Dayton, Ohio. Wright Petterson Air Force Base. AFFDL TR.Google Scholar
  9. Avdelas, A. V., Panagiotopoulos, P. D., and Kortesis, S. (1995). Neural networks for computing in elastoplastic analysis of structures. Meccanica 30:1–15.MathSciNetCrossRefMATHGoogle Scholar
  10. Baiocchi, C. and Capelo, A. (1984). Variational and quasi variational inequalities. Applications to free boundary problems. J. Wiley and Sons, Chichester.Google Scholar
  11. Baniotopoulos, C. (1998). Analysis of above-ground pipelines on unilateral supports: A neural network approach. The International Journal of Pressure Vessels and Piping 75(1):43–48.CrossRefGoogle Scholar
  12. Bathe, K. J. (1996). Finite element procedures. Prentice—Hall, New Jersey.Google Scholar
  13. Bertsekas, D. and Tsitsiklis, J. (1989). Parallel and distributed computation: numerical methods. Prentice Hall, Englewood Cliffs NJ.MATHGoogle Scholar
  14. Bisbos, C. D. (1995). A competitive game algorithm with five players for unilateral contact problems including the rotational and the thermal degrees of freedom. In Raous, M., Jean, M., and Moreau, J. J., editors, Contact mechanics pages 251–258, New York-London. Plenum Press.Google Scholar
  15. Christensen, P., Klarbring, A., Pang, J., and Strömberg, N. (1998). Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering 42:145–173.MathSciNetCrossRefMATHGoogle Scholar
  16. Cocu, M. (1984). Existence of solutions of Signorini problems with friction. International Journal of Engineering Sciences 22:567.MathSciNetCrossRefMATHGoogle Scholar
  17. Cottle, R. W., Pang, J. S., and Stone, R. E. (1992). The linear complementarity problem. Academic Press, Boston.MATHGoogle Scholar
  18. Dem’yanov, V. F., Stavroulakis, G. E., Polyakova, L. N., and Panagiotopoulos, P. D. (1996). Quasidifferentiability and nonsmooth modelling in mechanics, engineering and economics. Kluwer Academic, Dordrecht.CrossRefMATHGoogle Scholar
  19. Dominguez, J. (1993). Boundary elements in dynamics. Computational Mechanics Publications and Elsevier Applied Science, Shouthampton and New York.MATHGoogle Scholar
  20. Doudoumis, I., Mitsopoulou, E., and Charalambakis, N. (1995). The influence of the friction coefficients on the uniqueness of the solution of the unilateral contact problem. In Raous, M., Jean, M., and Moreau, J., editors, Contact mechanics pages 79–86, New York-London. Plenum Press.Google Scholar
  21. Duvaut, G. and Lions, J. L. (1972). Les inéquations en méchanique et en physique. Dunod, Paris.Google Scholar
  22. Facchinei, F., Fischer, A., and Kanzow, C. (1996). Inexact Newton methods for semismooth equations with applications to variational inequality problems. In DiPillo, G. and Giannessi, F., editors, Nonlinear Optimization and Applications pages 125–149, New York. Plenum Press.Google Scholar
  23. Fichera, G. (1972). Boundary value problems in elasticity with unilateral constraints volume VI a/2. Springer Verlag, Berlin. ed. by S. Flügge.Google Scholar
  24. Fischer, A. (1991). A special Newton-type optimization method. Optimization 24:269–284.CrossRefGoogle Scholar
  25. Fukushima, M. (1992). Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Mathematical Programming 53:99–110.MathSciNetCrossRefMATHGoogle Scholar
  26. Glowinski, R. and LeTallec, P. (1989). Augmented Lagrangian and operatorsplitting methods for nonlinear mechanics. SIAM, Philadelphia.CrossRefGoogle Scholar
  27. Goeleven, D., Stavroulakis, G. E., and Panagiotopoulos, P. D. (1996). Solvability theory for a class of hemivariational inequalities involving copositive plus matrices. Applications in robotics. Mathematical Programming Ser. A, 75(3):441–465.MathSciNetCrossRefMATHGoogle Scholar
  28. Goeleven, D., Stavroulakis, G. E., Salmon, G., and Panagiotopoulos, P. D. (1997). Solvability theory and projection methods for a class of singular variational inequalities. Elastostatic unilateral contact applications. Journal of Optimization Theory and Applications, 95(2):263–293.MathSciNetCrossRefMATHGoogle Scholar
  29. Hashin, Z. (1962). The elastic moduli of heterogeneous materials. J. Applied Mechanics Trans. ASME Ser. E, 29:143–150.MathSciNetCrossRefMATHGoogle Scholar
  30. He, Q. C., Telega, J. J., and Curnier, A. (1996). Unilateral contact of two solids subject to large deformations: Formulation and existence results. Proceedings of the Royal Society of London /A 452(1955):2691–2718.MathSciNetCrossRefGoogle Scholar
  31. Jarugek, J. (1983). Contact problems with bounded friction. Coercive case. Czech. Math. Journal 33:237.Google Scholar
  32. Jarugek, J. (1984). Contact problems with bounded friction. Semicoercive case. Czech. Math. Journal 34:619.Google Scholar
  33. Kalker, J. J. (1988). Contact mechanical algorithms. Communications in Applied Numerical Methods, 4:25–32.MathSciNetCrossRefMATHGoogle Scholar
  34. Kalker, J. J. (1990). Three—dimensional elastic bodies in rolling contact. Kluwer Academic, Dordrecht Boston.CrossRefMATHGoogle Scholar
  35. Kane, J. (1994). Boundary element analysis in engineering continuum mechanics. Prentice Hall, Englewood Cliffs NJ.Google Scholar
  36. Kanzow, C. (1994). Some equation-based methods for the nonlinear complementarity problem. Optimization Methods and Software 3:327–340.CrossRefGoogle Scholar
  37. Kanzow, C. (1996). Nonlinear complementarity as unconstrained optimization. Journal of Optimization Theory and Applications, 88:139–155.MathSciNetCrossRefMATHGoogle Scholar
  38. Kanzow, C. and Kleinmichel, H. (January 1997). A new class of semismooth newton-type methods for nonlinear complementarity problems. Hamburger Beiträge zur Angewandten Mathematik, A Prepring 118:25 pp.Google Scholar
  39. Kanzow, C., Yamashita, N., and Fukushima, M. (1997). New NCP-functions and their properties. Journal of Optimization Theory and Applications 94(1):115–136.MathSciNetCrossRefMATHGoogle Scholar
  40. Klarbring, A. (1986). A quadratic program in frictionless contact problems. International Journal of Engineering Sciences, 24:459–479.MathSciNetCrossRefGoogle Scholar
  41. Klarbring, A. and Björkman, G. (1988). A mathematical programming approach to contact problem with friction and varying contact surface. Computers and Structures 30:1185–1198.CrossRefMATHGoogle Scholar
  42. Klarbring, A., Mikeliè, A., and Shillor, M. (1991a). A global existence result for the quasistatic frictional contact problem with normal compliance. In International Series of Numerical Mathematics Vol. 101 page 85, Basel Boston. Birkhäuser Verlag.Google Scholar
  43. Klarbring, A., Mikeliè, A., and Shillor, M. (1991b). A global existence result for the quasistatic frictional contact problem with normal compliance. In DelPiero, G. and Maceri, F., editors, Unilateral Problems in Structural Mechanics IV pages 85–111, Basel Boston. Birkhäuser Verlag.Google Scholar
  44. Kortesis, S. and Panagiotopoulos, P. (1993). Neural networks for computing in structural analysis: methods and prospects of applications. International Journal for Numerical Methods in Engineering 36:2305–2318.CrossRefMATHGoogle Scholar
  45. Kummer, B. (1988). Newton’s method for non-differentiable functions. In Guddat, J. and et al., editors, Mathematical Research, Advances in Mathematical Optimization pages 114–125, Berlin. Akademie Verlag.Google Scholar
  46. Kwack, B. M. and Lee, S. S. (1988). A complementarity problem formulation for two—dimensional frictional contact problems. Computers and Structures 28:469–480.CrossRefGoogle Scholar
  47. Ladèveze, P. (1995). Mecanique des structures nonlineaires. Hérmes, Paris.Google Scholar
  48. LeTallec, P. (1990). Numerical analysis of viscoelastic problems. Masson and Springer, Paris and Berlin.Google Scholar
  49. Leung, A., Guoqing, C., and Wanji, C. (1998). Smoothing Newton method for solving two- and three-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering 41:1001–1027.MathSciNetCrossRefMATHGoogle Scholar
  50. Manolis, G. and Beskos, D. (1988). Boundary element methods in elastodynamics. Unwin Hyman Ltd., London.Google Scholar
  51. Martins, J. A. C. and Oden, J. T. (1987). Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Analysis Theory Methods and Applications, 11(3):407–428.MathSciNetCrossRefGoogle Scholar
  52. Mistakidis, E. and Stavroulakis, G. (1998). Nonconvex optimization in mechanics. Algorithms, heuristics and engineering applications by the F.E.M. Kluwer Academic, Dordrecht and Boston and London.Google Scholar
  53. Moreau, J. J. (1975). Application of convex analysis to the treatment of elastoplastic systems. In Germain, P. and Nayroles, B., editors, Application of methods of functional analysis to problems in mechanics pages 56–89, Berlin. Springer.Google Scholar
  54. Mosco, V. (1976). Implicit variational problems and quasi-variational inequalities. In Nonlinear operators and the calculus of variations pages 83–156, Berlin. Springer Verlag. Lect Notes in Math. 543.Google Scholar
  55. Murty, K. G. (1988). Linear complementarily, linear and nonlinear programming. Heldermann, Berlin.Google Scholar
  56. Nagurney, A. and Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
  57. Naniewicz, Z. (1993). On the existence of solutions to the continuum model of delamination. Nonlinear analysis 20(5):481–508.MathSciNetCrossRefMATHGoogle Scholar
  58. Neéas, J., Jarusek, J., and Haslinger, J. (1980). On the solution of the variational inequality to the Signorini problem with small friction. Bulletino U.M.I. 17B:796–811.Google Scholar
  59. Outrata, J. V. and Zowe, J. (1995). A Newton method for a class of quasi-variational inequalities. Computational Optimization and Applications 4:521.MathSciNetCrossRefGoogle Scholar
  60. Panagiotopoulos, P. D. (1975). A nonlinear programming approach to the unilateral contact and friction boundary value problem in the theory of elasticity. Ing. Archiv 44:421–432.MathSciNetCrossRefMATHGoogle Scholar
  61. Panagiotopoulos, P. D. (1985). Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser, Basel - Boston - Stuttgart. Russian translation, MIR Publ., Moscow 1988.Google Scholar
  62. Panagiotopoulos, P. D. (1993). Hemivariational inequalities. Applications in mechanics and engineering. Springer, Berlin - Heidelberg - New York.CrossRefMATHGoogle Scholar
  63. Pang, J. (1990). Newton’s method for B-differentiable equations. Mathematics of Operations Research 15:311–341.MathSciNetCrossRefMATHGoogle Scholar
  64. Pang, J. (1991). A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Mathematical Programming 51:101–131.MathSciNetCrossRefMATHGoogle Scholar
  65. Pang, J. S. and Ralph, D. (1996). Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Mathematics of operations research 21(2):401–426.MathSciNetCrossRefMATHGoogle Scholar
  66. Park, J. K. and Kwack, B. M. (1994). Three-dimensional frictional contact analysis using the homotopy method. ASME Journal of Applied Mechanics 61:703–709.CrossRefMATHGoogle Scholar
  67. Partridge, P., Brebbia, C., and Wrobel, L. (1992). The dual reciprocity boundary element method. Computational Mechanics Publications and Elsevier, Southampton and London.MATHGoogle Scholar
  68. Stavroulakis, G., Antes, H., and Panagiotopoulos, P. (1999). Transient elastodynamics around cracks including contact and friction. Computer Methods in Applied Mechanics and Engineering 177(3/4):427–440. Special Issue: Computational Modeling of Contact and Friction, Eds.: J.A.C. Martins and A. Klarbring.Google Scholar
  69. Stavroulakis, G. E. and Antes, H. (1999). Nonlinear boundary equation approach for inequality 2-D elastodynamics. Engineering Analysis with Boundary Elements 23(5–6):487–501.CrossRefMATHGoogle Scholar
  70. Stavroulakis, G. E. and Antes, H. (2000). Nonlinear equation approach for inequality elastostatics. a 2-d bem implementation. Computers and Structures 75(6):631–646.CrossRefGoogle Scholar
  71. Stavroulakis, G. E., Avdelas, A. V., Panagiotopoulos, P. D., and Abdalla, K. M. (1997). A neural network approach to the modelling, calculation and identification of semi—rigid connections in steel structures. The Journal of Constructional Steel Research 44(1–2):91–106.CrossRefGoogle Scholar
  72. Stavroulakis, G. E., Panagiotopoulos, P. D., and Al-Fahed, A. M. (1991). On the rigid body displacements and rotations in unilateral contact problems and applications. Computers and Structures 40:599–614.CrossRefMATHGoogle Scholar
  73. Telega, J. J. (1988). Topics on unilateral contact problems in elasticity and inelasticity. In Moreau, J. J. and Panagiotopoulos, P. D., editors, Nonsmooth Mechanics and Applications, CISM Lect. Notes. 302 pages 341–462. Springer, Wien New York.Google Scholar
  74. Telega, J. J. (1995). Quasi-static Signorini’s contact problem with friction and duality. In Raous, M., Jean, M., and Moreau, J., editors, Contact mechanics pages 199–214, New York-London. Plenum Press.Google Scholar
  75. Theocaris, P. S. and Panagiotopoulos, P. D. (1993). Neural networks for computing in fracture mechanics. Methods and prospects of applications. Computer Methods in Applied Mechanics and Engineering 106:213–228.CrossRefMATHGoogle Scholar
  76. Zavarise, G., Wriggers, P., Stein, E., and Shreffer, B. A. (1992). Real contact mechanisms and finite element formulation - a coupled thermomechanical approach. International Journal of Numerical Methods in Engineering 35:767–785.CrossRefMATHGoogle Scholar
  77. Zeidler, E. (1988). Nonlinear functional analysis and its applications. IV: Applications to mathematical physics. Springer Verlag, New York - Heidelberg.CrossRefMATHGoogle Scholar
  78. Zhong, Z. H. and Mackerle, J. (1992). Static contact problems - a review. Engineering Computations 9:3–37.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Georgios E. Stavroulakis
    • 1
  1. 1.Institute of Applied Mathematics, Department of Civil EngineeringTechnical University Carolo WilhelminaBraunschweigGermany

Personalised recommendations