Skip to main content

Lebesgue Integration

  • Chapter
  • First Online:
Real Analysis for the Undergraduate
  • 5572 Accesses

Abstract

Here we continue on our journey toward defining the Lebesgue integral. The previous chapter developed the theory of positive measures and measurable sets which will play the roles filled by length and intervals in the Riemann theory. The next phase of this process is to determine the class of functions to which we will apply our new integral. The final step will then be to construct the Lebesgue integral. As previously mentioned, this new integral will be concerned more specifically with the range of a function rather than its domain and will therefore be defined for functions which map into \(\mathbb{R}\), but whose domain may be some other set, be it of numbers or other objects. In Sect.7.5 and the introduction to Chap. 8 we spent a considerable amount of time discussing some of the major deficiencies of the Riemann integral. Once we have our formulation for the Lebesgue integral, we will demonstrate that it is a vast improvement upon its predecessor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, S.: Understanding Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  2. Axler, S.: Linear Algebra Done Right. Springer, New York (1996)

    Google Scholar 

  3. Axler, S.: Down with determinants! Am. Math. Mon. 102, 139–154 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bartle, R.G.: Return to the Riemann integral. Am. Math. Mon. 103, 625–632 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beanland, K., Roberts, J.W., Stevenson, C.: Modifications of Thomae’s function and differentiability. Am. Math. Mon. 116(6), 531–535 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beauzamy, B.: Introduction to Operator Theory and Invariant Subspaces. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  7. Bressoud, D.: A Radical Approach to Lebesgue’s Theory of Integration. MAA Textbooks. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  8. Bressoud, D.: A Radical Approach to Real Analysis, 2nd edn. Mathematical Association of America, Washington (2007)

    MATH  Google Scholar 

  9. de Silva, N.: A concise, elementary proof of Arzelà’s bounded convergence theorem. Am. Math. Mon. 117(10), 918–920 (2010)

    MATH  Google Scholar 

  10. Darst, R.B.: Some Cantor sets and Cantor functions. Math. Mag. 45, 2–7 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  11. Drago, G., Lamberti, P.D., Toni, P.: A “bouquet” of discontinuous functions for beginners of mathematical analysis. Am. Math. Mon. 118(9), 799–811 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Halmos, P.: A Hilbert Space Problem Book. Springer, New York (1982)

    Book  MATH  Google Scholar 

  13. Harier, E., Wanner, G.: Analysis by Its History. Springer, New York (1996)

    Google Scholar 

  14. Kirkwood, J.R.: An Introduction to Analysis. Waveland, Prospect Heights (1995)

    Google Scholar 

  15. Knopp, K.: Theory and Application of Infinite Series. Blackie, London (1951)

    MATH  Google Scholar 

  16. Kubrusly, C.: Elements of Operator Theory. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  17. Lebesgue, H.: Measure and the Integral. Holden-Day, San Francisco (1966)

    MATH  Google Scholar 

  18. MacCluer, B.D.: Elementary Functional Analysis. Springer, New York (2009)

    Book  MATH  Google Scholar 

  19. Martinez-Avendano, R., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert Space. Springer, New York (2006)

    Google Scholar 

  20. Mihaila, I.: The rationals of the Cantor set. Coll. Math. J. 35(4), 251–255 (2004)

    Article  MathSciNet  Google Scholar 

  21. Nadler, S.B., Jr.: A proof of Darboux’s theorem. Am. Math. Mon. 117(2), 174–175 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Niven, I.: Numbers: Rational and Irrational. New Mathematical Library, vol. 1. Random House, New York (1961)

    Google Scholar 

  23. Niven, I.: Irrational Numbers. The Carus Mathematical Monographs, vol. 11. Mathematical Association of America, New York (1956)

    Google Scholar 

  24. Olmsted, J.M.H.: Real Variables. Appleton-Century-Crofts, New York (1959)

    MATH  Google Scholar 

  25. Patty, C.W.: Foundations of Topology. Waveland, Prospect Heights (1997)

    Google Scholar 

  26. Pérez, D., Quintana, Y.: A survey on the Weierstrass approximation theorem (English, Spanish summary). Divulg. Mat. 16(1), 231–247 (2008)

    MATH  MathSciNet  Google Scholar 

  27. Radjavi, H., Rosenthal, P.: The invariant subspace problem. Math. Intell. 4(1), 33–37 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rynne, B.P., Youngson, M.A.: Linear Functional Analysis. Springer, London (2008)

    Book  MATH  Google Scholar 

  29. Saxe, K.: Beginning Functional Analysis. Springer, New York (2002)

    Book  MATH  Google Scholar 

  30. Strichartz, R.S.: The Way of Analysis. Jones and Bartlett, Boston (1995)

    MATH  Google Scholar 

  31. Thompson, B.: Monotone convergence theorem for the Riemann integral. Am. Math. Mon. 117(6), 547–550 (2010)

    Article  Google Scholar 

  32. Tucker, T.: Rethinking rigor in calculus: the role of the mean value theorem. Am. Math. Mon. 104(3), 231–240 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pons, M.A. (2014). Lebesgue Integration. In: Real Analysis for the Undergraduate. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9638-0_9

Download citation

Publish with us

Policies and ethics