Skip to main content

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

Despite 50 years of study, the evolution of the western Caribbean Plate region is still debated and there are three possible end-members: (1) Pacific model where the western Caribbean lithosphere is derived from the eastern Pacific and the northern and southern Caribbean Plate boundaries connect directly west to the Middle America Trench at the western Caribbean Plate boundary, (2) In-situ model where the western Caribbean lithosphere is derived from depth and the northern and southern Caribbean Plate boundaries terminate in a broad zone of extension in the western Caribbean Plate, and (3) Pirate model where the western Caribbean lithosphere is derived from the southern and northern margins of North and South America, and the northern and southern Caribbean Plate boundaries have either accommodated convergence themselves, or have curved to the north and south prior to reaching the Middle America Trench. Analysis indicates all models have been important for the evolution of the western Caribbean at different times but the Pirate model may have been dominant during the Cenozoic. The Pirate model resolves the absence of fault connections between the northern and southern boundaries of the Caribbean Plate with the Middle America Trench that are essential for the Pacific model and the > 1,100 km of net strike-slip displacements inferred across the northern and southern Caribbean margins that are unexplained by the in-situ model. In the Pirate model, North and South American material is inferred to have rotated into the trailing edge of the Caribbean Plate across the western Caribbean Plate corners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzaga-Ruiz H, Granjeon D, Lopez M, Séranne M, Roure F (2009a) Gravitational collapse and Neogene sediment transfer across the western margin of the Gulf of Mexico: insights from numerical models. Tectonophysics 470(1–2):21–41

    Google Scholar 

  • Alzaga-Ruiz H, Lopez M, Roure F, Séranne M (2009b) Interactions between the Laramide Foreland and the passive margin of the Gulf of Mexico: tectonics and sedimentation in the Golden Lane area, Veracruz State, Mexico. Mar Petrol Geol 26(6):951–973

    Google Scholar 

  • Andreani L, Le Pichon X, Rangin C, Martínez-Reyes J (2008a) The southern Mexico block: main boundaries and new estimation for its Quaternary motion. Bulletin de la Societe Geologique de France 179(2):209–223

    Google Scholar 

  • Andreani L, Rangin C, Martínez-Reyes J, Le Roy C, Aranda-García M, Le Pichon X, Peterson-Rodriguez R (2008b) The Neogene Veracruz fault: evidences for left-lateral slip along the southern Mexico block. Bulletin de la Societe Geologique de France 179(2):195–208

    Google Scholar 

  • Audemard FE, Audemard FA (2002) Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction. Tectonophysics 345(1-4):299–327

    Google Scholar 

  • Audemard FA (2009) Key issues on the post-Mesozoic southern Caribbean Plate boundary. Geol Soc Lond Spec Pub 328(1):569–586

    Google Scholar 

  • Audemard FA, Romero G, Rendon H, Cano V (2005) Quaternary fault kinematics and stress tensors along the southern Caribbean from fault-slip data and focal mechanism solutions. Earth-Sci Rev 69(3-4):181–233

    Google Scholar 

  • Authemayou C, Brocard G, Teyssier C, Simon-Labric T, Guttiérrez A, Chiquín EN, Morán S (2011) The Caribbean-North America-Cocos triple junction and the dynamics of the Polochic-Motagua fault systems: pull-up and zipper models. Tectonics 30 (TC 3010). doi:10.1029/2010TC002814

    Google Scholar 

  • Backé G, Dhont D, Hervouët Y (2006) Spatial and temporal relationships between compression, strike-slip and extension in the central Venezuelan Andes: clues for Plio-Quaternary tectonic escape. Tectonophysics 425(1-4):25–53

    Google Scholar 

  • Ball MM, Harris CGA, Supko PR (1969) Atlantic opening and the origin of the Caribbean. Nature 223(5202):167–168

    Google Scholar 

  • Bandy WL, Hilde TWC, Yan CY (2000) The Rivera-Cocos plate boundary: implications for Rivera-Cocos relative motion and plate fragmentation. Geol Soc Am Spec Pap 334:1–28

    Google Scholar 

  • Bird DE, Burke K, Hall SA, Casey JF (2005) Gulf of Mexico tectonic history: hotspot tracks, crustal boundaries, and early salt distribution. Am Assoc Pet Geol Bull 89(3):311–328

    Google Scholar 

  • Bouysse P (1988) Opening of the Grenada back-arc basin and evolution of the Caribbean Plate during the Mesozoic and early Paleogene. Tectonophysics 149(1-2):121–143

    Google Scholar 

  • Bouysse P, Westercamp D (1990) Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc. Tectonophysics 175(4):349–380

    Google Scholar 

  • Buffler RT, Schlager W, Pisciotto K (1984) Introduction. DSDP Rep Pub 77:5–22

    Google Scholar 

  • Burkart B (1978) Offset across the Polochic fault of Guatemala and Chiapas, Mexico. Geology 6(6):328–332

    Google Scholar 

  • Burkart B, Self S (1985) Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology 13(1):22–26

    Google Scholar 

  • Burke K (1988) Tectonic evolution of the Caribbean. Annu Rev Earth Planet Sci 16(1):201–230

    Google Scholar 

  • Camacho E, Hutton W, Pacheco JF (2010) A new look at evidence for a Wadati-Benioff zone and active convergence at the North Panama deformed belt. Bull Seismol Soc Am 100(1):343–348

    Google Scholar 

  • Campos-Enriquez J, Alatorre-Zamora M (1998) Shallow crustal structure of the junction of the grabens of Chapala, Tepic-Zacoalco and Colima, Mexico. Geofisica Internacional 37(4):263–282

    Google Scholar 

  • Cantu-Chapa A (1987) The Bejuco paleocanyon (Cretaceous-Paleocene) in the Tampico district, Mexico. J Pet Geol 10(2):207–218

    Google Scholar 

  • Chapa AC (1985) Is there a Chicontepec paleocanyon in the Paleogene of eastern Mexico? J Pet Geol 8(4):423–434

    Google Scholar 

  • Clark K, Foster C, Damon P (1982) Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico. Geol Soc Am Bull 93(6):533–544

    Google Scholar 

  • Cox A, Hart RB (1986) Plate tectonics: how it works. Wiley-Blackwell, Palo Alto, p 391

    Google Scholar 

  • DeMets C, Mattioli G, Jansma P, Rogers R, Tenorio C, Turner HL (2007) Present motion and deformation of the Caribbean plate: constraints from new GPS geodetic measurements from Honduras and Nicaragua. Geol Soc Am Spec Pap 428:21–36

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80

    Google Scholar 

  • Dewey JF, Burke K (1980) Episodicity, sequence, style at convergent plate boundaries. In the continental crust and its mineral deposits. Geol Assoc Can Spec Pap 20:553–573

    Google Scholar 

  • Dickinson WR (2009) The Gulf of Mexico and the southern margin of Laurentia. Geology 37(5):479–480

    Google Scholar 

  • Dickinson WR, Snyder WS (1979a) Geometry of subducted slabs related to San Andreas transform. J Geol 87(6):609–627

    Google Scholar 

  • Dickinson WR, Snyder WS (1979b) Geometry of triple junctions related to San Andreas transform. J Geophys Res 84(B2):561–572

    Google Scholar 

  • Dixon TH, Farina F, Demets C, Jansma P, Mann P, Calais E (1998) Relative motion between the Caribbean and North American Plates and related boundary zone deformation from a decade of GPS observations. J Geophys Res 103(B7):15157–15182

    Google Scholar 

  • Driscoll NW, Diebold JB (1998) Deformation of the Caribbean region: one plate or two? Geology 26(11):1043–1046

    Google Scholar 

  • Ego F, Ansan V (2002) Why is the Central Trans-Mexican Volcanic Belt (102°–99°W) in transtensive deformation? Tectonophysics 359(1–2):189–208

    Google Scholar 

  • Ego F, Sébrier M, Yepes H (1995) Is the Cauca-Patia and Romeral fault system left or right lateral? Geophys Res Lett 22(1):33–36

    Google Scholar 

  • English J, Johnston S (2004) The Laramide orogeny: what were the driving forces? Int Geol Rev 46(9):833

    Google Scholar 

  • English JM, Johnston ST, Wang K (2003) Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet Sci Lett 214(3–4):619–632

    Google Scholar 

  • Escalona A, Mann P (2011) Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American Plate boundary zone. Mar Petrol Geol 28:8–39

    Google Scholar 

  • ESRI (2011) A zipped shapefile of tectonic plate boundaries for the world. Includes boundary type attribute. It is intended for educational use. Last modified October 5, 2011. Downloaded from http://www.arcgis.com/home/item.html?id=357b0e32423f43cebf9f844ae70f7d1c

  • Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:33. doi:10.1029/2005RG000183

    Google Scholar 

  • Feng J, Buffler RT, Kominz MA (1994) Laramide orogenic influence on late Mesozoic-Cenozoic subsidence history, western deep Gulf of Mexico basin. Geology 22(4):359–362

    Google Scholar 

  • Fillon RH (2007) Mesozoic Gulf of Mexico basin evolution from a planetary perspective and petroleum system implications. Pet Geosci 13(2):105–126

    Google Scholar 

  • Flotte N, Martinez-Reyes J, Rangin C, Le Pichon X, Husson L, Tardy M et al (2008) The Rio Bravo fault, a major late Oligocene left-lateral shear zone. Bulletin de la Societe Geologique de France 179(2):147–160

    Google Scholar 

  • Giunta G, Beccaluva L (2006) Caribbean plate margin evolution: constraints and current problems. Geoligica Acta 4(1–2):265–277

    Google Scholar 

  • Gordon MB, Muehlberger WR (1994) Rotation of the Chortís block causes dextral slip on the Guayape fault. Tectonics 13(4):858–872

    Google Scholar 

  • Gorney D, Escalona A, Mann P, Magnani MB, Bolivar Study Group (2007) Chronology of Cenozoic tectonic events in western Venezuela and the Leeward Antilles based on integration of offshore seismic reflection data and on-land geology. Am Assoc Pet Geol Bull 91(5):653–684

    Google Scholar 

  • Gose WA (1985) Paleomagnetic results from Honduras and their bearing on Caribbean tectonics. Tectonics 4(6):565–585

    Google Scholar 

  • Gough DI, Heirtzler JR (1969) Magnetic anomalies and tectonics of the Cayman Trough. Geophys J Int 18(1):33–49

    Google Scholar 

  • Griffin WR, Foland KA, Stern RJ, Leybourne MI (2010) Geochronology of bimodal alkaline volcanism in the Balcones Igneous Province, Texas: implications for Cretaceous intraplate magmatism in the Northern Gulf of Mexico Magmatic Zone. J Geol 118(1):1–21

    Google Scholar 

  • Guerrero-Garcia JC, Herrero-Bervera E (2010) Tectonics of southwestern Mexico, isotopic evidence, nuclear Central America, Late Cretaceous break up. Studia Geophysica et Geodaetica 54(3):403–415

    Google Scholar 

  • Gurnis M, Hager BH (1988) Controls of the structure of subducted slabs. Nature 335(6188):317–321

    Google Scholar 

  • Gutscher M, Malavieille J, Lallemand S, Collot J-Y (1999) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168(3–4):255–270

    Google Scholar 

  • Guzmán-Speziale M (2009) A seismotectonic model for the Chortis Block. Geol Soc Lond Spec Pub 328(1):197–204

    Google Scholar 

  • Guzmán-Speziale M (2010) Beyond the Motagua and Polochic faults: active strike-slip faulting along the western North America-Caribbean Plate boundary zone. Tectonophysics 496(1–4):17–27. doi:10.1016/j.tecto.2010.10.002

    Google Scholar 

  • Guzmán-Speziale M, Meneses-Rocha JJ (2000) The North America-Caribbean Plate boundary west of the Motagua-Polochic fault system: a fault jog in southeastern Mexico. J S Am Earth Sci 13(4–5):459–468

    Google Scholar 

  • Guzmán-Speziale M, Pennington WD, Matumoto T (1989) The triple junction of the North America, Cocos, and Caribbean Plates: seismicity and tectonics. Tectonics 8(5):981–997

    Google Scholar 

  • Hall ML, Wood CA (1985) Volcano-tectonic segmentation of the northern Andes. Geology 13(3):203–207

    Google Scholar 

  • Hippolyte J, Mann P (2010) Neogene-Quaternary tectonic evolution of the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault kinematic analysis. Mar Petrol Geol 28:259–277

    Google Scholar 

  • Holcombe T, Vogt PR, Matthews JE, Murchison RR (1973) Evidence for sea-floor spreading in the Cayman Trough. Earth Planet Sci Lett 20(3):357–371

    Google Scholar 

  • Hossack J (1994) The age of salt in the Gulf of Mexico basin - comment. J Pet Geol 17(3):351–354

    Google Scholar 

  • Husson L, Henry P, Le Pichon X (2008a) Thermal regime of the NW shelf of the Gulf of Mexico. Part A: thermal and pressure fields. Bulletin de la Societe Geologique de France 179(2):129–137

    Google Scholar 

  • Husson L, Le Pichon X, Henry P, Flotte N, Rangin C (2008b) Thermal regime of the NW shelf of the Gulf of Mexico. Part B: heat flow. Bulletin de la Societe Geologique de France 179(2):139–145

    Google Scholar 

  • James KH (2006) Arguments for and against the Pacific origin of the Caribbean Plate: discussion, finding for an inter-American origin. Geologica Acta 4(1–2):279–302

    Google Scholar 

  • James KH (2009) Evolution of Middle America and the in situ Caribbean Plate model. Geol Soc Lond Spec Pub 328(1):127–138

    Google Scholar 

  • James KH (2009) In situ origin of the Caribbean: discussion of data. Geol Soc Lond Spec Pub 328(1):77–125

    Google Scholar 

  • James KH (2013) Caribbean geology: extended and subsided continental crust sharing history eastern North America, the Gulf of Mexico, the Yucatan Basin and northern South America. Geosci Canada 40(1). doi:http://dx.doi.org/10.12789%2Fgeocanj%2F2013.40.001

  • Jones RR, Holdsworth RE, Bailey W (1997) Lateral extrusion in transpression zones: the importance of boundary conditions. J Struct Geol 19(9):1201–1217

    Google Scholar 

  • Kennan L, Pindell JL (2009) Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate? Geol Soc Lond Spec Pub 328(1):487–531

    Google Scholar 

  • Keppie DF (2012) Derivation of the Chortis and Chiapas blocks from the western Gulf of Mexico in the latest Cretaceous-Cenozoic: the Pirate model. Int Geol Rev 54(15):1765–1775. doi:10.1080/00206814.2012.676356

    Google Scholar 

  • Keppie DF (2013) The rationale and essential elements for the new Pirate model of Caribbean tectonics. Geosci Can 40(1). doi:http://dx.doi.org/10.12789%2Fgeocanj%2F2013.40.002

  • Keppie DF, Keppie JD (2012) An alternative Pangea reconstruction for MiddleAmerica with the Chortis Block in the Gulf of Mexico: tectonic implications. Int Geol Rev 54(14):1685–1696. doi:10.1080/00206814.2012.676361

    Google Scholar 

  • Keppie JD, Morán-Zenteno D (2005) Tectonic implications of alternative Cenozoic reconstructions for southern Mexico and the Chortis Block. Int Geol Rev 47(5):473–491

    Google Scholar 

  • Keppie DF, Currie CA, Warren CJ (2009) Subduction erosion models: comparing finite element numerical models with the geological record. Earth Planet Sci Lett 287(1-2):241–254

    Google Scholar 

  • Keppie JD, Morán-Zenteno DJ, Martiny B, González-Torres E (2009) Synchronous 29-19 Ma arc hiatus, exhumation and subduction of forearc in southwestern Mexico. Geol Soc Lond Spec Pub 328(1):169–179

    Google Scholar 

  • Keppie DF, Hynes AJ, Lee JKW, Norman M (2012) Oligocene-Miocene back-thrusting in southern Mexico linked to the rapid subduction erosion of a large forearc block. Tectonics 31 (TC2008). doi:10.1029/2011TC002976

    Google Scholar 

  • Kerr AC, Tarney J, Marriner GF, Nivia A, Saunders AD (1997) The Caribbean-Colombian Cretaceous Igneous Province: the internal anatomy of an oceanic plateau. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: Continental, oceanic, and planetary flood volcanism, vol 100. American Geophysical Union geophysical monograph, Washington, DC, pp 123–144

    Google Scholar 

  • Kerr AC, Tarney J (2005) Tectonic evolution of the Caribbean and northwestern South America: the case for accretion of two Late Cretaceous oceanic plateaus. Geology 33(4):269–272

    Google Scholar 

  • Kim Y, Clayton R, Keppie DF (2011) Evidence of a collision between the Yucatan Block and Mexico in the Miocene. Geophys J Int. doi:10.1111/j.1365-246X.2011.05191.x

    Google Scholar 

  • Kuhn TS (ed) (1977) Objectivity, value judgement, and theory choice. In: The essential tension. University of Chicago Press, Chicago, pp 320–339

    Google Scholar 

  • La Femina PC, Dixon TH, Strauch W (2002) Bookshelf faulting in Nicaragua. Geology 30(8):751–754

    Google Scholar 

  • La Femina PC, Dixon TH, Govers R, Norabuena E, Turner H, Saballos A, Mattioli G, Protti M, Strauch W (2009) Fore-arc motion and Cocos Ridge collision in Central America. Geochem Geophys Geosys 10(5). doi:10.1029/2008GC002181

    Google Scholar 

  • Labails C, Olivet JL, Aslanian D, Roest WR (2010) An alternative early opening scenario for the Central Atlantic Ocean. Earth Planet Sci Lett 297(3–4):355–368. doi:10.1016/j.epsl.2010.06.024

    Google Scholar 

  • Lang H, Frerichs W (1998) New Planktic Foraminiferal Data Documenting Coniacian Age for Laramide Orogeny Onset and paleooceanography in Southern Mexico. J Geol 106(5):635–640

    Google Scholar 

  • Leroy S, Mauffret A, Patriat P, Mercier deLB (2000) An alternative interpretation of the Cayman trough evolution from a reidentification of magnetic anomalies. Geophys J Int 141:539–557

    Google Scholar 

  • Li C, van der Hilst RD, Engdahl ER, Burdick S (2008) A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosys 9:21. doi:10.1029/2007GC001806

    Google Scholar 

  • Longoria J, Suter M (1990) Structural traverse across the Sierra Madre oriental fold-thrust belt in east-central Mexico: alternative interpretation and reply. Geol Soc Am Bull 102(2):261–266

    Google Scholar 

  • Lyon-Caen H et al (2006) Kinematics of the North American-Caribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophys Res Lett 33:5

    Google Scholar 

  • Macdonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Sci Rev 49(1–4):1–76

    Google Scholar 

  • MacRae G, Watkins JS (1992) Evolution of the Destin Dome, offshore Florida, north-eastern Gulf of Mexico. Mar Petrol Geol 9(5):501–509

    Google Scholar 

  • Mandujano-Velazquez JJ, Keppie JD (2009) Middle Miocene Chiapas fold and thrust belt of Mexico: a result of collision of the Tehuantepec Transform/Ridge with the Middle America Trench. Geol Soc Lond Spec Pub 327(1):55–69

    Google Scholar 

  • Mann P (2007) Overview of the tectonic history of northern Central America. Geol Soc Am Spec Pap 428:1–19

    Google Scholar 

  • Marquez-Azua B, DeMets C (2009) Deformation of Mexico from continuous GPS from 1993 to 2008. Geochem Geophys Geosys 10:16

    Google Scholar 

  • Marsaglia KM, Davis AS, Rimkus K, Clague DA (2006) Evidence for interaction of a spreading ridge with the outer California borderland. Mar Geol 229(3–4):259–272

    Google Scholar 

  • Marton G, Buffler RT (1994) Jurassic reconstruction of the Gulf of Mexico Basin. Int Geol Rev 36:545–586

    Google Scholar 

  • Maus SU, Barckhausen H, Berkenbosch N, Bournas J, Brozena V, Childers F, Dostaler JD, Fairhead C, Finn RRB, von Frese C, Gaina S, Golynsky R, Kucks H, Luhr P, Milligan S, Mogren D, Muller O, Olesen M, Pilkington R, Saltus B, Schreckenberger E, Thebault F, Caratori T (2010) EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochem Geophys Geosyst 10(8). doi:10.1029/2009GC002471

    Google Scholar 

  • McKenzie DP, Morgan WJ (1969) Evolution of triple junctions. Nature 224(5215):125–133

    Google Scholar 

  • Meschede M, Frisch W (1998) A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics 296(3–4):269–291

    Google Scholar 

  • Michaud F, Witt C, Royer J (2009) Influence of the subduction of the Carnegie volcanic ridge on Ecuadorian geology: reality and fiction. Geol Soc Am Memoir 204:217–228

    Google Scholar 

  • Mickus K, Stern RJ, Keller GR, Anthony EY (2009) Potential field evidence for a volcanic rifted margin along the Texas Gulf Coast. Geology 37(5):387–390

    Google Scholar 

  • Molnar P, Sykes LR (1969) Tectonics of the Caribbean and Middle America Regions from focal mechanisms and seismicity. Geol Soc Am Bull 80(9):1639–1684

    Google Scholar 

  • Montes C, Hatcher J, Restrepo-Pace PA (2005) Tectonic reconstruction of the northern Andean blocks: oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics 399(1–4):221–250

    Google Scholar 

  • Montes C, Guzman G, Bayona G, Cardona A, Valencia V, Jaramillo C (2010) Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. J S Am Earth Sci 29:832–848. doi:10.1016/j.jsames.2009.07.010

    Google Scholar 

  • Morán-Zenteno DJ, Keppie JD, Martiny B, González-Torres E (2009) Reassessment of the Paleogene position of the Chortis Block relative to southern Mexico: hierarchichal ranking of data and features. Revista Mexicana de Ciencias Geologicas 26(1):177–188

    Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73(6):1959–1982. doi: 10.1029/JB073i006p01959

    Google Scholar 

  • Morgan JP, Ranero C, Vannucchi P (2008) Intra-arc extension in Central America: links between plate motions, tectonics, volcanism, and geochemistry. Earth Planet Sci Lett 272(1–2):365–371

    Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosys 9 (Q04006). doi:10.1029/2007GC001743

    Google Scholar 

  • Nagihara S, Jones KO (2005) Geothermal heat flow in the northeast margin of the Gulf of Mexico. Am Assoc Pet Geol Bull 89(6):821–831

    Google Scholar 

  • Oskin M, Stock J, Martin-Barajas A (2001) Rapid localization of Pacific-North America plate motion in the Gulf of California. Geology 29(5):459–462

    Google Scholar 

  • Pindell JL (1985) Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas and proto-Caribbean. Tectonics 4(1):1–39

    Google Scholar 

  • Pindell JL, Cande SC, Pitman WCIII, Rowley DB, Dewey JF, LaBrecque J, Haxby W (1988) A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155(1–4):121–138

    Google Scholar 

  • Pindell JL (2010) Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and proto-Caribbean. Tectonics 4(1):1–39. doi:10.1029/TC004i001p00001

    Google Scholar 

  • Pindell JL, Barrett S (1990) Geological evolution of the Caribbean region; a plate tectonic perspective. In: Dengo GA, Case JE (eds) The geology of North America. Geological Society of America, Boulder, pp 405–432

    Google Scholar 

  • Pindell JL, Dewey JF (1982) Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics 1(2):179–211

    Google Scholar 

  • Pindell JL, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geol Soc Lond Spec Pub 328(1):1–55

    Google Scholar 

  • Pindell JL, Kennan L, Maresch WV, Stanek K-P, Draper G, Higgs R (2005) Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: tectonic controls on basin development in Proto-Caribbean margins. Geol Soc Am Spec Pap 394:7–52

    Google Scholar 

  • Pindell JL, Kennan L, Stanek K-P, Maresch WV, Draper G (2006) Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geologica Acta 4(1–2):303–341

    Google Scholar 

  • Rangin C, Le Pichon X, Flotte N, Husson L (2008a) Cenozoic gravity tectonics in the northern Gulf of Mexico induced by crustal extension. A new interpretation of multichannel seismic data. Bulletin de la Societe Geologique de France 179(2):117–128

    Google Scholar 

  • Rangin C, Le Pichon X, Martinez-Reyes J, Aranda-Garcia M (2008b) Gravity tectonics and plate motions: the western margin of the Gulf of Mexico Introduction. Bulletin de la Societe Geologique de France 179(2):107–116

    Google Scholar 

  • Ratschbacher L, Franz L, Min M, Bachmenn R, Martens U, Stanek K, Stubner K, Nelson BK, Herrmann U, Weber B, López-Martínez M, Jonckheere R, Sperner B, Tichomirowa M, McWilliams MO, Gordon M, Meschede M, Bock P (2009) The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras. Geol Soc Lond Spec Pub 328(1):219–293

    Google Scholar 

  • Rea DK, Malfait BT (1974) Geologic evolution of the northern Nazca Plate. Geology 2(7):317–320

    Google Scholar 

  • Reed JM (1994) Probable Cretaceous-to-recent rifting in the Gulf of Mexico basin: an answer to Callovian salt deformation and distribution problems? Part 1. J Pet Geol 17(4):429–444

    Google Scholar 

  • Reed JM (1995) Probable Cretaceous-to-recent rifting in the Gulf of Mexico basin: an answer to Callovian salt deformation and distribution problems? Part 2. J Pet Geol 18(1):49–74

    Google Scholar 

  • Rodriguez M, DeMets C, Rogers R, Tenorio C, Hernandez D (2009) A GPS and modelling study of deformation in northern Central America. Geophys J Int 178(3):1733–1754

    Google Scholar 

  • Rogers RD, Mann P (2007) Transtensional deformation of the western Caribbean-North America plate boundary zone. Geol Soc Am Spec Pap 428:37–64

    Google Scholar 

  • Rogers RD, Mann P, Emmet PA (2007) Tectonic terranes of the Chortis Block based on integration of regional aeromagnetic and geologic data. Geol Soc Am Spec Pap 428:65–88

    Google Scholar 

  • Rosencrantz E, Ross MI, Sclater JG (1988) Age and spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. J Geophys Res 93(B3):2141–2157

    Google Scholar 

  • Rosencrantz E, Sclater JG (1986) Depth and age in the Cayman Trough. Earth Planet Sci Lett 79(1–2):133–144

    Google Scholar 

  • Ross MI, Scotese CR (1988) A hierarchical tectonic model of the Gulf of Mexico and Caribbean region. Tectonophysics 155(1–4):139–168

    Google Scholar 

  • Salvador A (1987) Late Triassic-Jurassic paleogeography and origin of Gulf of Mexico Basin. AAPG Bulletin 71(4):419–451

    Google Scholar 

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry ridge segmentation versus spreading rate. J Geophys Res 114 (B01411). doi:10.1029/2008JB006008

    Google Scholar 

  • Sawyer D, Buffler RT, Pilger R (1991) The crust under the Gulf of Mexico Basin. In: Salvador A (ed) The geology of North America. Geological Society of America, Boulder, pp 53–72

    Google Scholar 

  • Seton M, Muller RD, Zahirovic S, Gaina C, Torsvik TH, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 112(3–4):212–270. doi:10.1016/j.earscirev.2012.03.002

    Google Scholar 

  • Silva-Romo G (2008) Guayape-Papalutla fault system: a continuous Cretaceous structure from southern Mexico to the Chortís block? Tectonic implications. Geology 36(1):75–78

    Google Scholar 

  • Silver EA, Case JE, MacGillavry HJ (1975) Geophysical study of the Venezuelan Borderland. Geol Soc Am Bull 86(2):213–226

    Google Scholar 

  • Spencer A (1969) Alkalic igneous rocks of the Balcones Province, Texas. Petrology 10(2):272–306

    Google Scholar 

  • Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359(6391):123–129

    Google Scholar 

  • Suter F, Sartori M, Neuwerth R, Gorin G (2008) Structural imprints at the front of the Chocó-Panamá indenter: field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics 460(1-4):134–157

    Google Scholar 

  • Talavera-Mendoza O, Ruiz J, Corona-Chavez P, Gehrels GE, Sarmiento-Villagrana A, Garcia-Diaz JL, Salgado-Souto SA (2013) Origin and provenance of basement metasedimentary rocks from the Xolapa Complex: new constraints on the Chortis-southern Mexico connection. Earth Planet Sci Lett 369–370:188–199. doi: 10.1016/j.epsl.2013.03.021

    Google Scholar 

  • Talbot C (2004) Extensional evolution of the Gulf of Mexico basin and the deposition of Tertiary evaporites - discussion. J Pet Geol 27(1):95–104

    Google Scholar 

  • Torres-de Leon R, Solari L, Ortega-Gutierrez F, Martens U (2012) The Chortis Block - southwestern Mexico connections: U-Pb zircon geochronology constraints. Am J Sci 312(3):288–313. doi: 10.2475/03.2012.02

    Google Scholar 

  • Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15(2):157–171

    Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Vallejo C, Winkler W, Spiking RA, Luzieux L, Heller F, Bussy F (2009) Model and timing of terrane accretion in the forearc of the Andes in Ecuador. Geol Soc Am Mem 204:197–216

    Google Scholar 

  • Valls Alvarez RA (2009) Geological evolution of the NW corner of the Caribbean Plate. Geol Soc Lond Spec Pub 328(1):205–217

    Google Scholar 

  • Wallace LM, Ellis S, Mann P (2010) Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings. Geochem Geophys Geosys 10 (Q05001). doi:10.1029/2008GC002220

    Google Scholar 

  • Walper J, Rowett CL (1972) Plate tectonics and origin of Caribbean Sea and Gulf of Mexico. GCAGS 22:105–116

    Google Scholar 

  • Wark DA, Kempter KA, McDowell FW (1990) Evolution of waning, subduction-related magmatism, northern Sierra Madre Occidental, Mexico. Geol Soc Am Bull 102(11):1555–1564

    Google Scholar 

  • Wilson HH (1993) The age of salt in the Gulf of Mexico basin. J Pet Geol 16(2):125–151

    Google Scholar 

  • Wilson HH (2003) Extensional evolution of the Gulf of Mexico Basin and the deposition of tertiary evaporites. J Pet Geol 26(4):403–428

    Google Scholar 

  • Wilson HH (2004) Extensional evolution of the Gulf of Mexico Basin and the depostion of tertiary evaporites. J Pet Geol 27(1):105–110

    Google Scholar 

  • Yu Z, Lerche I, Lowrie A (1992) Thermal impact of salt: simulation of thermal anomalies in the Gulf of Mexico. Pure Appl Geophys 138(2):181–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fraser Keppie .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keppie, D. (2014). Western Caribbean Tectonics. In: The Analysis of Diffuse Triple Junction Zones in Plate Tectonics and the Pirate Model of Western Caribbean Tectonics. SpringerBriefs in Earth Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9616-8_2

Download citation

Publish with us

Policies and ethics