Skip to main content

Fundamental Retinal Circuitry for Circadian Rhythms

  • Chapter
  • First Online:
The Retina and Circadian Rhythms

Part of the book series: Springer Series in Vision Research ((SSVR,volume 1))

Abstract

A remarkable piece of tissue, the retina is a true outpost of the brain, peripheral only for its location on the back of the eye. Downstream of the photoreceptors, the specialized cells which transduce light energy into electric signals then conveyed to the brain by the optic nerve, approximately 60 types of neurons belonging to five classes are arranged in a sophisticated architecture and provide the substrate for extracting information pertinent to contrast, position in space, intensity, chromatic content, and movement. Light reaching photoreceptors and other photosensitive retinal neurons is also coded as temporal information pertinent to the alternation of night and day and to seasonal changes. This information is transmitted to a central clock located in the brain, which tunes biological rhythms to environmental light–dark cycles. Thus, a single sensory organ, the retina, informs the brain of light changes functional to vision, as well as to variations of light occurring in time, providing the core information for the existence of circadian rhythms. Correspondingly, this chapter summarizes fundamental features of retinal organization providing an overview of the main principles according to which the mammalian retina is built and operates as an organ of the visual system. The focus is, however, on retinal neuronal types and circuits forming the substrate for the establishment and function of circadian rhythms. Indications are given for appreciating the elaborate architecture of the whole retinal neurome and the likely existence of retinal channels deputed to code features of the visual scene of so far unsuspected complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010; 90(3):1063–102.

    Article  CAS  PubMed  Google Scholar 

  2. Masland RH. The neuronal organization of the retina. Neuron. 2012;76(2):266–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gollisch T, Meister M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron. 2010;65(2):150–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004; 5(10):747–57.

    Article  PubMed  Google Scholar 

  5. Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci. 2009;12(1):44–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res. 2010;29(2):113–34.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Goldberg AF. Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol. 2006;253:131–75.

    CAS  PubMed  Google Scholar 

  8. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC. The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol. 2008;316(1):160–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res. 2013;32:64–87.

    Article  CAS  PubMed  Google Scholar 

  10. Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res. 2012;103:82–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res. 2012;31(5):407–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mills SL, Massey SC. A series of biotinylated tracers distinguishes three types of gap junction in retina. J Neurosci. 2000;20(22):8629–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Linberg KA, Fisher SK. Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina. J Comp Neurol. 1988;268(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wassle H. Types of bipolar cells in the mouse retina. J Comp Neurol. 2004;469(1):70–82.

    Article  PubMed  Google Scholar 

  15. Strettoi E, Novelli E, Mazzoni F, Barone I, Damiani D. Complexity of retinal cone bipolar cells. Prog Retin Eye Res. 2010;29(4):272–83.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Snellman J, Kaur T, Shen Y, Nawy S. Regulation of ON bipolar cell activity. Prog Retin Eye Res. 2008;27(4):450–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pignatelli V, Strettoi E. Bipolar cells of the mouse retina: a gene gun, morphological study. J Comp Neurol. 2004;476(3):254–66.

    Article  PubMed  Google Scholar 

  18. Field GD, Chichilnisky EJ. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci. 2007;30:1–30.

    Article  CAS  PubMed  Google Scholar 

  19. Kuffler SW. The single-cell approach in the visual system and the study of receptive fields. Invest Ophthalmol. 1973;12(11):794–813.

    CAS  PubMed  Google Scholar 

  20. Awatramani GB, Slaughter MM. Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci. 2000;20(18):7087–95.

    CAS  PubMed  Google Scholar 

  21. DeVries SH. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron. 2000;28(3):847–56.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, DeVries SH. Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nat Neurosci. 2006;9(5):669–75.

    Article  CAS  PubMed  Google Scholar 

  23. Haverkamp S, Wassle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T. The primordial, blue-cone color system of the mouse retina. J Neurosci. 2005;25(22):5438–45.

    Article  CAS  PubMed  Google Scholar 

  24. Demb JB, Singer JH. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis Neurosci. 2012;29(1):51–60.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Han Y, Massey SC. Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Proc Natl Acad Sci U S A. 2005;102(37):13313–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lagnado L. Signal amplification: let’s turn down the lights. Curr Biol. 2002;12(6):R215–7.

    Article  CAS  PubMed  Google Scholar 

  27. Sterling P, Freed MA, Smith RG. Architecture of rod and cone circuits to the on-beta ganglion cell. J Neurosci. 1988;8(2):623–42.

    CAS  PubMed  Google Scholar 

  28. Kolb H, Famiglietti EV. Rod and cone pathways in the inner plexiform layer of cat retina. Science. 1974;186(4158):47–9.

    Article  CAS  PubMed  Google Scholar 

  29. Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol. 1992;325(2):152–68.

    Article  CAS  PubMed  Google Scholar 

  30. Strettoi E, Dacheux RF, Raviola E. Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. J Comp Neurol. 1994;347(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  31. Veruki ML, Hartveit E. Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J Neurosci. 2002;22(24):10558–66.

    CAS  PubMed  Google Scholar 

  32. Gustincich S, Feigenspan A, Wu DK, Koopman LJ, Raviola E. Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron. 1997;18(5):723–36.

    Article  CAS  PubMed  Google Scholar 

  33. Contini M, Lin B, Kobayashi K, Okano H, Masland RH, Raviola E. Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol. 2010;518(11):2035–50.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108(1):17–40.

    Article  PubMed  Google Scholar 

  35. Ribelayga C, Cao Y, Mangel SC. The circadian clock in the retina controls rod-cone coupling. Neuron. 2008;59(5):790–801.

    Article  CAS  PubMed  Google Scholar 

  36. Bloomfield SA, Volgyi B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci. 2009;10(7):495–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. Microcircuits for night vision in mouse retina. J Neurosci. 2001;21(21):8616–23.

    CAS  PubMed  Google Scholar 

  38. Bowmaker JK. Evolution of colour vision in vertebrates. Eye (Lond). 1998;12(Pt 3b):541–7.

    Article  Google Scholar 

  39. Briggman KL, Helmstaedter M, Denk W. Wiring specificity in the direction-selectivity circuit of the retina. Nature. 2011;471(7337):183–8.

    Article  CAS  PubMed  Google Scholar 

  40. Masland RH. The many roles of starburst amacrine cells. Trends Neurosci. 2005;28(8): 395–6.

    Article  CAS  PubMed  Google Scholar 

  41. Masland RH. The tasks of amacrine cells. Vis Neurosci. 2012;29(1):3–9.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Taylor WR, Smith RG. Trigger features and excitation in the retina. Curr Opin Neurobiol. 2011;21(5):672–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms. 2003;18(3):227–34.

    Article  PubMed  Google Scholar 

  44. Berson DM. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26(6):314–20.

    Article  CAS  PubMed  Google Scholar 

  45. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557): 1065–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, Brainard GC, Gregory-Evans K, Rizzo 3rd JF, Czeisler CA, Foster RG, Moseley MJ, Lockley SW. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007;17(24):2122–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Damiani D, Novelli E, Mazzoni F, Strettoi E. Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration. J Comp Neurol. 2012;520(7):1406–23.

    Article  PubMed  Google Scholar 

  48. La Morgia C, Ross-Cisneros FN, Sadun AA, Hannibal J, Munarini A, Mantovani V, Barboni P, Cantalupo G, Tozer KR, Sancisi E, Salomao SR, Moraes MN, Moraes-Filho MN, Heegaard S, Milea D, Kjer P, Montagna P, Carelli V. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain. 2010;133(Pt 8):2426–38.

    Article  PubMed  Google Scholar 

  49. La Morgia C, Ross-Cisneros FN, Hannibal J, Montagna P, Sadun AA, Carelli V. Melanopsin-expressing retinal ganglion cells: implications for human diseases. Vision Res. 2011;51(2): 296–302.

    Article  PubMed  Google Scholar 

  50. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A. 2008; 105(41):16009–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433(7027):749–54.

    Article  CAS  PubMed  Google Scholar 

  52. Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci. 2010;11(8):563–76.

    Article  CAS  PubMed  Google Scholar 

  53. Strettoi E, Pignatelli V. Bipolar cells of the mouse retina: a gene gun, morphological study. ARVO Meeting Abstracts. 2004;45(5):5365.

    Google Scholar 

  54. Strettoi E, Dacheux RF, Raviola E. Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. J Comp Neurol. 1990;295(3):449–66.

    Article  CAS  PubMed  Google Scholar 

  55. Weiler R, Pottek M, He S, Vaney DI. Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. Brain Res Brain Res Rev. 2000;32(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  56. Strettoi E. Morphology of interneurons: amacrine cells. In: Besharse J, Dana R, editors. Encyclopedia of the eye, vol. 4. Amsterdam: Elsevier/Academic Press; 2010. p. 60–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Strettoi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strettoi, E., Parisi, V. (2014). Fundamental Retinal Circuitry for Circadian Rhythms. In: Tosini, G., Iuvone, P., McMahon, D., Collin, S. (eds) The Retina and Circadian Rhythms. Springer Series in Vision Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9613-7_2

Download citation

Publish with us

Policies and ethics