Skip to main content

Molluskan Ocular Pacemakers: Lessons Learned

  • Chapter
  • First Online:
Book cover The Retina and Circadian Rhythms

Part of the book series: Springer Series in Vision Research ((SSVR,volume 1))

Abstract

Invertebrate models have proved invaluable in understanding of fundamental properties of the nervous system including the ionic basis of the resting potential, impulse production, synaptic transmission, and the cellular basis of learning and memory. Invertebrate models have also provided important insights into the cellular mechanisms underlying circadian rhythms. Study of the retinae of several opisthobranch mollusks, which contain circadian clocks, has provided lasting insights into the cellular/molecular basis of biological timing. Key “lessons” from the molluskan retina include the cell-autonomous nature of neuronal clocks, the mechanisms underlying coupling within multi-oscillator ensembles, and the biochemical/ionic mechanisms involved in synchronization of the clock by environmental timing cycles. Much of what was learned from molluskan retinae remains highly relevant to study of mammalian circadian system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Welsh D, Takahashi J, Kay S. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Selverston AI, Kennedy D. Structure and function of identified nerve cells in the crayfish. Endeavour. 1969;28(105):107–13.

    CAS  PubMed  Google Scholar 

  4. Kandel ER, Abrams T, Bernier L, Carew TJ, Hawkins RD, Schwartz JH. Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):821–30.

    CAS  PubMed  Google Scholar 

  5. Block GD, Khalsa SB, McMahon DG, Michel S, Guesz M. Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int Rev Cytol. 1993;146:83–144.

    CAS  PubMed  Google Scholar 

  6. Jacklet JW. Neurobiology of circadian generators. Trends Neurosci. 1995;8:69–73.

    Google Scholar 

  7. Blumenthal EM, Block GD, Arnold E. Cellular and molecular analysis of molluscan circadian pacemakers. In: Takahashi JS, editor. Handbook of behavioral neurobiology: circadian clocks. New York: Plenum; 2001. p. 371–400.

    Google Scholar 

  8. Jacklet JW. Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science. 1969;164(879):562–3.

    CAS  PubMed  Google Scholar 

  9. Eskin A, Harcombe E. Eye of Navanax: optic nerve activity, circadian rhythm and morphology. Comp Biochem Physiol A-Comp Physiol. 1977;57A:443–9.

    Google Scholar 

  10. Block GD, Wallace SF. Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science. 1982;217:155–7.

    CAS  PubMed  Google Scholar 

  11. Roberts MH, Block GD, Luska AE. Comparative studies of circadian pacemaker coupling in opisthobranch molluscs. Brain Res. 1987;423(1–2):286–92.

    CAS  PubMed  Google Scholar 

  12. Kuhlman S, McMahon D. Encoding the ins and outs of circadian pacemaking. J Biol Rhythms. 2006;21:470–81.

    CAS  PubMed  Google Scholar 

  13. Ko G, Shi L, Ko M. Circadian regulation of ion channels and their functions. J Neurochem. 2009;110:1150–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Jacklet JW, Geronimo J. Circadian rhythm: population of interacting neurons. Science. 1971;174(4006):299–302.

    CAS  PubMed  Google Scholar 

  15. Herman KG, Strumwasser F. Regional specializations in the eye of Aplysia, a neuronal circadian oscillator. J Comp Neurol. 1984;230(4):593–613.

    CAS  PubMed  Google Scholar 

  16. Woolum JC, Strumwasser F. The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia. Proc Natl Acad Sci U S A. 1980;77(9): 5542–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Jacklet JW, Colquhoun W. Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. J Neurocytol. 1983;12(4):673–96.

    CAS  PubMed  Google Scholar 

  18. Block GD, McMahon DG. Cellular analysis of the Bulla ocular circadian pacemaker system III. Localization of the circadian pacemaker. J Comp Physiol A. 1984;155:387–95.

    Google Scholar 

  19. Block GD, McMahon DG. Cellular analysis of the Bulla ocular circadian pacemaker system I. A model for retinal organization. J Comp Physiol A. 1984;155:365–78.

    Google Scholar 

  20. Panda S. Multiple photopigments entrain the mammalian circadian oscillator. Neuron. 2007;53(5):619–21.

    CAS  PubMed  Google Scholar 

  21. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron. 2010;67(1):49–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Güler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron. 2010;66(3):417–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Berson DM. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26(6):314–20.

    CAS  PubMed  Google Scholar 

  24. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci. 2002;22:RC191.

    PubMed  Google Scholar 

  25. Michel S, Geusz ME, Zaritsky JJ, Block GD. Circadian rhythm in membrane conductance expressed in isolated neurons. Science. 1993;259(5092):239–41.

    CAS  PubMed  Google Scholar 

  26. Schwartz W, Gross R, Morton M. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci U S A. 1987;84:1694–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, van der Horst GT, Meijer JH. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr Biol. 2002;12(13):1130–3.

    CAS  PubMed  Google Scholar 

  28. Inouye ST, Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 1979;76: 5962–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Meijer J, Watanabe K, Schaap J, Albus H, Détári L. Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci. 1998;18:9078–87.

    CAS  PubMed  Google Scholar 

  30. Nakamura W, Yamazaki S, Nakamura TJ, Shirakawa T, Block GD, Takumi T. In vivo monitoring of circadian timing in freely moving mice. Curr Biol. 2008;18(5):381–5.

    CAS  PubMed  Google Scholar 

  31. Schaap J, Pennartz C, Meijer J. Electrophysiology of the circadian pacemaker in mammals. Chronobiol Int. 2003;20:171–88.

    PubMed  Google Scholar 

  32. Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14(4):697–706.

    CAS  PubMed  Google Scholar 

  33. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8(4):476–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Herzog ED, Geusz ME, Khalsa SB, Straume M, Block GD. Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res. 1997;757(2): 285–90.

    CAS  PubMed  Google Scholar 

  35. Webb AB, Angelo N, Huettner JE, Herzog ED. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci U S A. 2009;106(38): 16493–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma K. Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett. 1998;250(3):157–60.

    CAS  PubMed  Google Scholar 

  37. McMahon DG, Wallace SF, Block GD. Cellular analysis of the Bulla ocular circadian pacemaker system: II. Neurophysiological basis of circadian rhythmicity. J Comp Physiol. 1984;155:379–85.

    Google Scholar 

  38. Ralph MR, Block GD. Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. J Comp Physiol A. 1990;166(5):589–95.

    CAS  PubMed  Google Scholar 

  39. Barnes S, Jacklet JW. Ionic currents of isolated retinal pacemaker neurons, projected daily phase differences and selective enhancement by a phase-shifting neurotransmitter. J Neurophysiol. 1997;77(6):3075–84.

    CAS  PubMed  Google Scholar 

  40. Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci. 2011;12(10):553–69.

    CAS  PubMed  Google Scholar 

  41. Pennartz CM, Bierlaagh MA, Geurtsen AM. Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J Neurophysiol. 1997;78(4):1811–25.

    CAS  PubMed  Google Scholar 

  42. Belle MD, Diekman CO, Forger DB, Piggins HD. Daily electrical silencing in the mammalian circadian clock. Science. 2009;326(5950):281–4.

    CAS  PubMed  Google Scholar 

  43. Mathie A. Neural two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol. 2007;578:377–85.

    CAS  PubMed  Google Scholar 

  44. Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci. 2008;29(11):566–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lein E, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    CAS  PubMed  Google Scholar 

  46. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307–20.

    CAS  PubMed  Google Scholar 

  47. Pitts GR, Ohta H, McMahon DG. Daily rhythmicity of large-conductance Ca2+-activated K+ currents in suprachiasmatic nucleus neurons. Brain Res. 2006;1071:54–62.

    CAS  PubMed  Google Scholar 

  48. Meredith AL, Wiler SW, Miller BH, Takahashi JS, Fodor AA, Ruby NF, Aldrich RW. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci. 2006;9:1041–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kent J, Meredith AL. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus. PLoS One. 2008;3(12):e3884.

    PubMed Central  PubMed  Google Scholar 

  50. Eskin A, Takahashi JS, Zatz M, Block GD. Cyclic guanosine 3′:5′-monophosphate mimics the effects of light on a circadian pacemaker in the eye of aplysia. J Neurosci. 1984; 4(10):2466–71.

    CAS  PubMed  Google Scholar 

  51. Block GD, McMahon DG. Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers. Brain Res. 1983;265(1):134–7.

    CAS  PubMed  Google Scholar 

  52. Eskin A. Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses. J Comp Physiol. 1972;80:353–76.

    Google Scholar 

  53. McMahon DG, Block GD. The Bulla ocular circadian pacemaker. I. Pacemaker neuron membrane potential controls phase through a calcium-dependent mechanism. J Comp Physiol A. 1987;161(3):335–46.

    CAS  PubMed  Google Scholar 

  54. Khalsa SB, Block GD. Calcium channels mediate phase shifts of the Bulla circadian pacemaker. J Comp Physiol A. 1988;164(2):195–206.

    CAS  PubMed  Google Scholar 

  55. Colwell CS, Whitmore D, Michel S, Block GD. Calcium plays a central role in phase shifting the ocular circadian pacemaker of Aplysia. J Comp Physiol A. 1994;175(4):415–23.

    CAS  PubMed  Google Scholar 

  56. Geusz ME, Michel S, Block GD. Intracellular calcium responses of circadian pacemaker neurons measured with fura-2. Brain Res. 1994;638(1–2):109–16.

    CAS  PubMed  Google Scholar 

  57. Berson D, Dunn F, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3.

    CAS  PubMed  Google Scholar 

  58. Warren E, Allen C, Brown R, Robinson D. Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci. 2003;17:1727–35.

    PubMed Central  PubMed  Google Scholar 

  59. Tu D, Zhang D, Demas J, Slutsky E, Provencio I, Holy T, Van Gelder R. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron. 2005;48: 987–99.

    CAS  PubMed  Google Scholar 

  60. Irwin R, Allen C. Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci. 2007;27:11748–57.

    CAS  PubMed  Google Scholar 

  61. Gamble KL, Allen GC, Zhou T, McMahon DG. Gastrin-releasing peptide mediates light-like resetting of the suprachiasmatic nucleus circadian pacemaker through cAMP response element-binding protein and Per1 activation. J Neurosci. 2007;27(44):12078–87.

    CAS  PubMed  Google Scholar 

  62. Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol. 2013;110:1097–106.

    CAS  PubMed  Google Scholar 

  63. Colwell CS. NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci. 2001;13:1420–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang LM, Schroeder A, Loh D, Smith D, Lin K, Han JH, Michel S, Hummer DL, Ehlen JC, Albers HE, Colwell CS. Role for the NR2B subunit of the N-methyl-D-aspartate receptor in mediating light input to the circadian system. Eur J Neurosci. 2008;27(7):1771–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Kim DY, Choi HJ, Kim JS, Kim YS, Jeong DU, Shin HC, Kim MJ, Han HC, Hong SK, Kim YI. Voltage-gated calcium channels play crucial roles in the glutamate-induced phase shifts of the rat suprachiasmatic circadian clock. Eur J Neurosci. 2005;21(5):1215–22.

    PubMed  Google Scholar 

  66. Aguilar-Roblero R, Mercado C, Alamilla J, Laville A, Díaz-Muñoz M. Ryanodine receptor Ca2+-release channels are an output pathway for the circadian clock in the rat suprachiasmatic nuclei. Eur J Neurosci. 2007;26:575–82.

    PubMed  Google Scholar 

  67. Eskin A. Properties of the Aplysia visual system: in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z Vergl Physiol. 1971;74:353–71.

    Google Scholar 

  68. Block GD. In vivo recording of the ocular circadian rhythm in Aplysia. Brain Res. 1981; 222(1):138–43.

    CAS  PubMed  Google Scholar 

  69. Prichard RG, Lickey ME. In vitro resetting of the circadian clock in the Aplysia eye. I. Importance of efferent activity in optic nerve. J Neurosci. 1981;1(8):835–9.

    CAS  PubMed  Google Scholar 

  70. Roberts MH, Block GD. Analysis of mutual circadian pacemaker coupling between the two eyes of Bulla. J Biol Rhythms. 1985;1(1):55–75.

    CAS  PubMed  Google Scholar 

  71. Takahashi JS, Nelson DE, Eskin A. Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. Neuroscience. 1989;28(1):139–47.

    CAS  PubMed  Google Scholar 

  72. Nadakavukaren JJ, Lickey ME, Jordan WP. Regulation of the circadian clock in the Aplysia eye: mimicry of neural action by serotonin. J Neurosci. 1986;6(1):14–21.

    CAS  PubMed  Google Scholar 

  73. Colwell CS. Light and serotonin interact in affecting the circadian system of Aplysia. J Comp Physiol A. 1990;167(6):841–5.

    CAS  PubMed  Google Scholar 

  74. Corrent G, McAdoo DJ, Eskin A. Serotonin shifts the phase of the circadian rhythm from the Aplysia eye. Science. 1978;202(4371):977–9.

    CAS  PubMed  Google Scholar 

  75. Corrent G, Eskin A, Kay I. Entrainment of the circadian rhythm from the eye of Aplysia: role of serotonin. Am J Physiol. 1982;242(3):R326–32.

    CAS  PubMed  Google Scholar 

  76. Eskin A, Corrent G, Lin CY, McAdoo DJ. Mechanism for shifting the phase of a circadian rhythm by serotonin: involvement of cAMP. Proc Natl Acad Sci U S A. 1982;79(2):660–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Eskin A, Takahashi JS. Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science. 1983;220(4592):82–4.

    CAS  PubMed  Google Scholar 

  78. Jacklet JW, Klose M, Goldberg M. FMRF-amide-like immunoreactive efferent fibers and FMRF-amide suppression of pacemaker neurons in eyes of Bulla. J Neurobiol. 1987; 18(5):433–49.

    CAS  PubMed  Google Scholar 

  79. Roberts MH, Moore RY. Localization of neuropeptides in efferent terminals of the eye in the marine snail, Bulla gouldiana. Cell Tissue Res. 1987;248(1):67–73.

    CAS  PubMed  Google Scholar 

  80. Colwell CS, Khalsa SB, Block GD. FMRFamide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla. J Comp Physiol A. 1992; 170(2):211–5.

    CAS  PubMed  Google Scholar 

  81. Colwell CS, Michael S, Block GD. Evidence that potassium channels mediate the effects of serotonin on the ocular circadian pacemaker of Aplysia. J Comp Physiol A. 1992;171(5): 651–6.

    CAS  PubMed  Google Scholar 

  82. Ralph MR, Khalsa SBS, Block GD. Cyclic nucleotides and circadian rhythm generation in Bulla gouldiana. Comp Biochem Physiol. 1992;101A:813–7.

    CAS  Google Scholar 

  83. McMahon DG, Block GD. The Bulla ocular circadian pacemaker. II. Chronic changes in membrane potential lengthen free running period. J Comp Physiol A. 1987;161(3):347–54.

    CAS  PubMed  Google Scholar 

  84. Eskin A. Increasing external K+ blocks phase shifts in a circadian rhythm produced by serotonin or 8-benzylthio-cAMP. J Neurobiol. 1982;13(3):241–9.

    CAS  PubMed  Google Scholar 

  85. Khalsa SB, Block GD. Calcium in phase control of the Bulla circadian pacemaker. Brain Res. 1990;506(1):40–5.

    CAS  PubMed  Google Scholar 

  86. Medanic M, Gillette MU. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro during the subjective day. J Physiol. 1992;450:629–42.

    CAS  PubMed  Google Scholar 

  87. Prosser RA, Dean RR, Edgar DM, Heller HC, Miller JD. Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists. J Biol Rhythms. 1993;8:1–16.

    CAS  PubMed  Google Scholar 

  88. Edgar DM, Miller JD, Prosser RA, Dean RR, Dement WC. Serotonin and the mammalian circadian system II: phase shifting rat behavioral rhythms with serotonergic agonists. J Biol Rhythms. 1993;8:17–31.

    CAS  PubMed  Google Scholar 

  89. Marchant EG, Watson NV, Mistlberger RE. Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. J Neurosci. 1997;17(20):7974–87.

    CAS  PubMed  Google Scholar 

  90. Morin LP, Blanchard J. Depletion of brain serotonin by 5-7-DHT modifies hamster circadian rhythm response to light. Brain Res. 1991;566:173–85.

    CAS  PubMed  Google Scholar 

  91. Dudley TE, DiNardo LA, Glass JD. Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurosci. 1998;18(13):5045–52.

    CAS  PubMed  Google Scholar 

  92. Rea MA, Glass JD, Colwell CS. Serotonin modulates the photic response of the circadian oscillator in the hamster suprachiasmatic nucleus. J Neurosci. 1994;14:3635–42.

    CAS  PubMed  Google Scholar 

  93. Meyer-Bernstein EL, Blanchard JH, Morin LP. The serotonergic projection from the median raphe nucleus to the suprachiasmatic nucleus modulates activity phase onset, but not other circadian rhythm parameters. Brain Res. 1997;755:112–20.

    CAS  PubMed  Google Scholar 

  94. Ying SW, Rusak B. Effects of serotonergic agonists on firing rates of photically responsive cells in the hamster suprachiasmatic nucleus. Brain Res. 1994;651:37–46.

    CAS  PubMed  Google Scholar 

  95. Flett J, Colwell CS. Serotonin modulation of calcium transients in cells in the suprachiasmatic nucleus. J Biol Rhythms. 1999;14(5):354–63.

    CAS  PubMed  Google Scholar 

  96. Roberts MH, Block GD. Mutual coupling between the ocular circadian pacemakers of Bulla gouldiana. Science. 1983;221(4605):87–9.

    CAS  PubMed  Google Scholar 

  97. Page TL, Nalovic KG. Properties of mutual coupling between the two circadian pacemakers in the eyes of the mollusc Bulla gouldiana. J Biol Rhythms. 1992;7(3):213–26.

    CAS  PubMed  Google Scholar 

  98. Block GD, Roberts MH, Lusska AE. Cellular analysis of ocular circadian pacemaker coupling in Bulla: role of efferent impulses in phase shifting. J Biol Rhythms. 1986;1(3): 199–217.

    CAS  PubMed  Google Scholar 

  99. Lacroix L, Strack S, Olson LM, Jacklet JW. Axons of circadian pacemaker neurons in the eye of Bulla project to the central nervous system and the contralateral eye. Comp Biochem Physiol A. 1991;98:383–91.

    Google Scholar 

  100. Michel S, Schoch K, Stevenson PA. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol. 2000;425(2): 244–56.

    CAS  PubMed  Google Scholar 

  101. Ehnert C, Stevenson PA, Schildberger K, Michel S. Role of glutamate in coupling between bilaterally paired circadian clocks in Bulla gouldiana. Neuroscience. 2012;202:267–75.

    CAS  PubMed  Google Scholar 

  102. Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1–2):172–91.

    CAS  PubMed  Google Scholar 

  103. Antle MC, Silver R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 2005;28(3):145–51.

    CAS  PubMed  Google Scholar 

  104. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010; 90(3):1063–102.

    CAS  PubMed  Google Scholar 

  105. De la Iglesia HO, Meyer J, Carpino Jr A, Schwartz WJ. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science. 2000;290:799–801.

    PubMed  Google Scholar 

  106. Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat Neurosci. 2005;8:267–9.

    CAS  PubMed  Google Scholar 

  107. Pickard GE. The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol. 1982;211:65–83.

    CAS  PubMed  Google Scholar 

  108. Leak RK, Card JP, Moore RY. Suprachiasmatic pacemaker organization analyzed by viral transsynaptic transport. Brain Res. 1999;819:23–32.

    CAS  PubMed  Google Scholar 

  109. Michel S, Marek R, Vanderleest HT, Vansteensel MJ, Schwartz WJ, Colwell CS, Meijer JH. Mechanism of bilateral communication in the suprachiasmatic nucleus. Eur J Neurosci. 2013;37(6):964–71.

    PubMed  Google Scholar 

  110. Rothman BS, Strumwasser F. Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide. Electrophysiological and biochemical studies. J Gen Physiol. 1976;68(4):359–84.

    CAS  PubMed  Google Scholar 

  111. Jacklet JW. Neuronal circadian rhythm: phase shifting by a protein synthesis inhibitor. Science. 1977;198(4312):69–71.

    CAS  PubMed  Google Scholar 

  112. Lotshaw DP, Jacklet JW. Serotonin induced protein phosphorylation in the Aplysia eye. Comp Biochem Physiol C. 1987;86(1):27–32.

    CAS  PubMed  Google Scholar 

  113. Yeung SJ, Eskin A. Involvement of a specific protein in the regulation of a circadian rhythm in Aplysia eye. Proc Natl Acad Sci U S A. 1987;84(1):279–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Khalsa SB, Whitmore D, Block GD. Stopping the circadian pacemaker with inhibitors of protein synthesis. Proc Natl Acad Sci U S A. 1992;89(22):10862–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Raju U, Koumenis C, Nunez-Regueiro M, Eskin A. Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor. Science. 1991;253(5020):673–5.

    CAS  PubMed  Google Scholar 

  116. Koumenis C, Tran Q, Eskin A. The use of a reversible transcription inhibitor, DRB, to investigate the involvement of specific proteins in the ocular circadian system of Aplysia. J Biol Rhythms. 1996;11(1):45–56.

    CAS  PubMed  Google Scholar 

  117. Khalsa SB, Whitmore D, Bogart B, Block GD. Evidence for a central role of transcription in the timing mechanism of a circadian clock. Am J Physiol. 1996;271(5 Pt 1):C1646–51.

    CAS  PubMed  Google Scholar 

  118. O’Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol. 2013;217:67–103.

    PubMed  Google Scholar 

  119. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    CAS  PubMed  Google Scholar 

  120. Sloan MA, Levenson J, Tran Q, Kerbeshian M, Block GD, Eskin A. Aging affects the ocular circadian pacemaker of Aplysia californica. J Biol Rhythms. 1999;14(2):151–9.

    CAS  PubMed  Google Scholar 

  121. Van Someren EJ. Circadian rhythms and sleep in human aging. Chronobiol Int. 2000; 17:233–43.

    PubMed  Google Scholar 

  122. Satinoff E, Li H, Tcheng TK, Liu C, McArthur AJ, Medanic M, Gillette MU. Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones? Am J Physiol. 1993;265: R1216–22.

    CAS  PubMed  Google Scholar 

  123. Turek FW, Penev P, Zhang Y, van Reeth O, Zee P. Effects of age on the circadian system. Neurosci Biobehav Rev. 1995;19:53–8.

    CAS  PubMed  Google Scholar 

  124. Watanabe A, Shibata S, Watanabe S. Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro. Brain Res. 1995;695:237–9.

    CAS  PubMed  Google Scholar 

  125. Aujard F, Herzog ED, Block GD. Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle-aged mice. Neuroscience. 2001;106(2):255–61.

    CAS  PubMed  Google Scholar 

  126. Biello SM. Circadian clock resetting in the mouse changes with age. Age. 2009; 31(4):293–303.

    PubMed  Google Scholar 

  127. Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, Block GD. Age-related decline in circadian output. J Neurosci. 2011;31(28):10201–5.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene D. Block Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Block, G.D., Colwell, C.S. (2014). Molluskan Ocular Pacemakers: Lessons Learned. In: Tosini, G., Iuvone, P., McMahon, D., Collin, S. (eds) The Retina and Circadian Rhythms. Springer Series in Vision Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9613-7_11

Download citation

Publish with us

Policies and ethics