Skip to main content

Projection Methods

  • Chapter
  • First Online:
Linear Integral Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 82))

  • 5574 Accesses

Abstract

The application of the quadrature method, in principle, is confined to equations of the second kind. To develop numerical methods that can also be used for equations of the first kind we will describe projection methods as a general tool for approximately solving linear operator equations. After introducing into the principal ideas of projection methods and their convergence and error analysis we shall consider collocation and Galerkin methods as special cases. We do not intend to give a complete account of the numerous implementations of collocation and Galerkin methods for integral equations that have been developed in the literature. Our presentation is meant as an introduction to these methods by studying their basic concepts and describing their numerical performance through a few typical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge Univ. Press, Cambridge 1997.

    Book  MATH  Google Scholar 

  2. Baker, C.T.H.: The Numerical Treatment of Integral Equations. Clarendon Press, Oxford 1977.

    MATH  Google Scholar 

  3. Brebbia, C.A., Telles, J.C.F., and Wrobel, L.C.: Boundary Element Techniques. Springer, Berlin 1984.

    Book  MATH  Google Scholar 

  4. Cakoni, F., and Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Problems 29, 015005 (2013).

    Article  MathSciNet  Google Scholar 

  5. Céa, J.: Approximation variationelle des problèmes aux limites. Ann. Inst. Fourier 14, 345–444 (1964).

    Article  MATH  Google Scholar 

  6. Chen, G., and Zhou, J.: Boundary Element Methods. Academic Press, London 1992.

    MATH  Google Scholar 

  7. Colton, D., and Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed. Springer, Berlin 2013.

    Book  MATH  Google Scholar 

  8. Elliott, D F., and Rao, K.R.: Fast Transforms. Algorithms, Analyses, Applications. Academic Press, New York 1982.

    Google Scholar 

  9. Fenyö, I., and Stolle, H.: Theorie und Praxis der linearen Integralgleichungen, I–IV. Birkhäuser-Verlag, Basel 1981–1984.

    Google Scholar 

  10. Galerkin, B.G.: Expansions in stability problems for elastic rods and plates. Vestnik inzkenorov 19, 897–908 (1915) (In Russian).

    Google Scholar 

  11. Ganesh, M., and Graham, I. G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. Graham, I. G., and Sloan, I. H.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in \({\mathrm{I\!R}}^{3}\). Numer. Math. 92, 289–323 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hackbusch, W.: Integral Equations: Theory and Numerical Treatment. Birkhäuser-Verlag, Basel 1994.

    Google Scholar 

  14. Hestenes, M.R., and Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49, 409–436 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hohage, T.: On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Problems 17, 1743–1763 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. Hohage, T.: Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comp. Phys. 214, 224–238 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. Krasnoselski, M.A., Vainikko, G.M., Zabreko, P.P., and Rutitskii, Y.: Approximate Solution of Operator Equations. Wolters-Noordhoff, Groningen (1972).

    Book  Google Scholar 

  18. Kress, R.: A collocation method for a hypersingular boundary integral equation via trigonometric differentiation. Jour. Integral Equations and Appl. (to appear).

    Google Scholar 

  19. Kress, R., and Sloan, I.H.: On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation. Numer. Math 66, 193–214 (1993).

    Article  MathSciNet  Google Scholar 

  20. Mikhlin, S.G., and Prössdorf, S.: Singular Integral Operators. Springer-Verlag, Berlin 1986.

    Book  Google Scholar 

  21. Natanson, I.P.: Konstruktive Funktionentheorie. Akademie-Verlag, Berlin 1955.

    MATH  Google Scholar 

  22. Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms. Springer, Berlin 1982.

    Book  Google Scholar 

  23. Petrov, G.I.: Application of Galerkin’s method to a problem of the stability of the flow of a viscous fluid. Priklad. Matem. i Mekh. 4, 3–12 (1940) (In Russian).

    Google Scholar 

  24. Prössdorf, S., and Saranen, J.: A fully discrete approximation method for the exterior Neumann boundary value problem for the Helmholtz equation. Z. Anal. Anwendungen 13, 683–695 (1994).

    MathSciNet  MATH  Google Scholar 

  25. Prössdorf, S., and Silbermann, B.: Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen. Teubner, Leipzig 1977.

    MATH  Google Scholar 

  26. Prössdorf, S., and Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Akademie-Verlag, Berlin 1991, and Birkhäuser-Verlag, Basel 1991.

    Google Scholar 

  27. Rao, K.R., Kim, D.N., and Hwang, J. J.: Fast Fourier Transform – Algorithms and Applications. Springer, Dordrecht 2010.

    Book  MATH  Google Scholar 

  28. Lord Rayleigh: The Theory of Sound. London 1896.

    Google Scholar 

  29. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. f. reine u. angew. Math. 135, 1–61 (1908).

    MATH  Google Scholar 

  30. Rjasanow, S., and Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin 2007.

    MATH  Google Scholar 

  31. Saranen, J., and Vainikko, G.: Trigonometric collocation methods with product integration for boundary integral equations on closed curves. SIAM J. Numer. Anal. 33, 1577–1596 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  32. Saranen, J., and Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer, Berlin 2002.

    Book  MATH  Google Scholar 

  33. Sauter, S.A., and Schwab, C.: Boundary element methods. Springer, Berlin 2011.

    Book  Google Scholar 

  34. Schönhage, A.: Approximationstheorie. de Gruyter, Berlin 1971.

    Book  MATH  Google Scholar 

  35. Sloan, I.H.: Error analysis for a class of degenerate-kernel methods. Numer. Math. 25, 231–238 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  36. Sloan, I.H.: Error analysis of boundary integral methods. Acta Numerica 1, 287–339 (1992).

    Article  MathSciNet  Google Scholar 

  37. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York 2008.

    Google Scholar 

  38. Vainikko, G.: Fast solvers of the Lippmann–Schwinger equation In: Direct and Inverse Problems of Mathematical Physics (Gilbert, Kajiwara and Xu, eds). Kluwer, Dordrecht, 423–440 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kress, R. (2014). Projection Methods. In: Linear Integral Equations. Applied Mathematical Sciences, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9593-2_13

Download citation

Publish with us

Policies and ethics