Operator Approximations

  • Rainer Kress
Part of the Applied Mathematical Sciences book series (AMS, volume 82)


In subsequent chapters we will study the numerical solution of integral equations. It is our intention to provide the basic tools for the investigation of approximate solution methods and their error analysis. We do not aim at a complete review of all the various numerical methods that have been developed in the literature. However, we will develop some of the principal ideas and illustrate them with a few instructive examples.


  1. 5.
    Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs 1971.MATHGoogle Scholar
  2. 6.
    Anselone, P.M., and Moore, R.H.: Approximate solutions of integral and operator equations. J. Math. Anal. Appl. 9, 268–277 (1964).MathSciNetCrossRefGoogle Scholar
  3. 19.
    Brakhage, H.: Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numer. Math. 2, 183–196 (1960).MathSciNetCrossRefMATHGoogle Scholar
  4. 192.
    Plemelj, J.: Potentialtheoretische Untersuchungen. Preisschriften der Fürstlich Jablonowskischen Gesellschaft. Teubner, Leipzig 1911.MATHGoogle Scholar
  5. 226.
    Steinbach, O., and Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl.262, 733–748 (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rainer Kress
    • 1
  1. 1.Institut für Numerische und AngewandteGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations