Skip to main content

Gravity Recovery and Interior Laboratory (GRAIL): Mapping the Lunar Interior from Crust to Core

  • Chapter
GRAIL: Mapping the Moon’s Interior

Abstract

The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E.L. Akim, Determination of the gravitational field of the Moon from the motion of the artificial lunar satellite “Lunar-10”. Dokl. Akad. Nauk SSSR 170 (1966)

    Google Scholar 

  • M.P. Ananda, Lunar gravity: a mass point model. J. Geophys. Res. 82, 3040–3064 (1977)

    Article  ADS  Google Scholar 

  • S.W. Asmar et al., The scientific measurement system of the Gravity Recovery and Interior Laboratory (GRAIL) mission. Space Sci. Rev. (2012, this issue)

    Google Scholar 

  • M.J. Chung, S.J. Hatch, J.A. Kangas, S.M. Long, R.B. Roncoli, T.H. Sweetser, Trans-lunar cruise trajectory design of GRAIL mission, in AIAA Astrodynamics Conf., Toronto, CA (2010)

    Google Scholar 

  • C. Dunn et al., The instrument on NASA’s GRACE mission: augmentation of GPS to achieve unprecedented gravity field measurements, in Proc. 15th Int. Tech. Meeting of Satellite Division of Institute of Navigation, Portland, OR, 2002, pp. 724–730

    Google Scholar 

  • L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)

    Article  ADS  Google Scholar 

  • GAO, US Government Accountability Office Report to Congressional Committees, NASA—Assessments of Selected Large-Scale Projects (U.S. Government Accountability Office, Washington, 2012), p. 16

    Google Scholar 

  • S.J. Hatch, R.B. Roncoli, T.H. Sweetser, GRAIL trajectory design: lunar orbit insertion through science, in AIAA Astrodynamics Conf., Toronto, CA (2010). AIAA 2010-8385, 8 pp.

    Google Scholar 

  • W.A. Heiskanen, H. Moritz, Physical Geodesy (W.H. Freeman, San Francisco/London, 1967)

    Google Scholar 

  • T.L. Hoffman, GRAIL: gravity mapping the Moon, in IEEE Aerospace Conference, Big Sky, MT, 978-1-4244-2622-5 (2009)

    Google Scholar 

  • L.L. Hood, M.T. Zuber, Recent refinements in geophysical constraints on lunar origin and evolution, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (Univ. of Ariz. Press, Tucson, 2000), pp. 397–409

    Google Scholar 

  • M.D. Johnson, J.E. Graf, R.W. Zurek, H.J. Eisen, B. Jai, The Mars Reconnaissance Orbiter mission, in IEEE Aerospace Conf. (2005)

    Google Scholar 

  • W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966), 124 pp.

    Google Scholar 

  • W.M. Klipstein et al., The lunar gravity ranging system for the Gravity Recovery and Interior Laboratory (GRAIL) mission. Space Sci. Rev. (2012, this issue)

    Google Scholar 

  • A.S. Konopliv, S.W. Asmar, E. Carranza, W.L. Sjogren, D.-N. Yuan, Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001)

    Article  ADS  Google Scholar 

  • A.S. Konopliv, A. Binder, L. Hood, A. Kucinskas, W.L. Sjogren, J.G. Williams, Gravity field of the Moon from Lunar Prospector. Science 281, 1476–1480 (1998)

    Article  ADS  Google Scholar 

  • F.G. Lemoine, D.E. Smith, M.T. Zuber, G.A. Neumann, D.D. Rowlands, A 70th degree and order lunar gravity model from Clementine and historical data. J. Geophys. Res. 102, 16339–16359 (1997)

    Article  ADS  Google Scholar 

  • E. Mazarico, F.G. Lemoine, S.-C. Han, D.E. Smith, GLGM-3, a degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters. J. Geophys. Res. 115, E050001 (2010). doi:10.1029/2009JE003472

    Article  Google Scholar 

  • K. Matsumoto et al., An improved lunar gravity field model from SELENE and historical tracking data: revealing the farside gravity features. J. Geophys. Res. 115 (2010). doi:10.1029/2009JE003499

  • P.M. Muller, W.L. Sjogren, Mascons: lunar mass concentrations. Science 161, 680–684 (1968)

    Article  ADS  Google Scholar 

  • N. Namiki et al., Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science 323, 900–905 (2009)

    Article  ADS  Google Scholar 

  • G.A. Paulikas et al., The Scientific Context for Exploration of the Moon: Final Report (National Research Council, Washington, 2007), 120 pp.

    Google Scholar 

  • R.J. Phillips, J.E. Conel, E.A. Abbot, W.L. Sjogren, J.B. Morton, Mascons: progress toward a unique solution for mass distribution. J. Geophys. Res. 77, 7106–7114 (1972)

    Article  ADS  Google Scholar 

  • R.J. Phillips, W.L. Sjogren, E.A. Abbott, S.H. Zisk, Simulation gravity modeling to spacecraft tracking data: analysis and application. J. Geophys. Res. 83, 5455–5464 (1978)

    Article  ADS  Google Scholar 

  • R.B. Roncoli, K.K. Fujii, Mission design overview for the Gravity Recovery and Interior Laboratory (GRAIL) mission, in AIAA Guidance, Navigation and Control Conference, AIAA 2010-9393, Toronto, Ontario, Canada (2010), 22 pp.

    Google Scholar 

  • T.H. Sweetser, M.S. Wallace, S.J. Hatch, R.B. Roncoli, Design of an extended mission for GRAIL, in AIAA Astrodynamics Specialist Conference, AIAA-2012-4439, Minneapolis, MN (2012), 18 pp.

    Google Scholar 

  • B.D. Tapley, S. Bettadpur, J.C. Ries, P.F. Thompson, M.M. Watkins, GRACE measurements of mass variability in the Earth system. Science 305 (2004). doi:10.1126/science.1099192

  • R.L. Taylor, M.T. Zuber, D.H. Lehman, T.L. Hoffman, Managing GRAIL: getting to launch on cost, on schedule and on spec, in IEEE Aerospace Conference, Big Sky, MT (2012)

    Google Scholar 

  • J.B. Thomas, An analysis of gravity-field estimation based on intersatellite dual-1-way biased ranging, Jet Propulsion Laboratory (1999), 196 pp.

    Google Scholar 

  • M.S. Wallace, T.H. Sweetser, R.B. Roncoli, Low lunar orbit design via graphical manipulation of eccentricity vector evolution, in AIAA Astrodynamics Conference, Minneapolis, MN (2012)

    Google Scholar 

  • L. Wong, G. Buechler, W. Downs, W. Sjogren, P. Muller, P. Gottlieb, A surface layer representation of the lunar gravity field. J. Geophys. Res. 76, 6220–6236 (1971)

    Article  ADS  Google Scholar 

  • J.A. Wood, J.S. Dickey, U.B. Marvin, B.N. Powell, Lunar anorthosites and a geophysical model for the Moon, in Proc. Apollo 11 Lunar Sci. Conf., vol. 1 (1970), pp. 965–988

    Google Scholar 

  • M.T. Zuber, D.E. Smith, F.G. Lemoine, G.A. Neumann, The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994)

    Article  ADS  Google Scholar 

  • M.T. Zuber, D.E. Smith, D.H. Lehman, M.M. Watkins, Gravity Recovery and Interior Laboratory mission: facilitating future exploration to the Moon, in Int. Astronaut. Congress, Naples, Italy (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. Zuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zuber, M.T., Smith, D.E., Lehman, D.H., Hoffman, T.L., Asmar, S.W., Watkins, M.M. (2012). Gravity Recovery and Interior Laboratory (GRAIL): Mapping the Lunar Interior from Crust to Core. In: Zuber, M.T., Russell, C.T. (eds) GRAIL: Mapping the Moon’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9584-0_2

Download citation

Publish with us

Policies and ethics