Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1599 Accesses

Abstract

In this chapter, we present the design of a sub-nanosecond tunable monocycle pulse transmitter for low-power short-range UWB applications. The transmitter is made up of a clock driving circuit, a SRD coupling circuit, a backward decoupling circuit and two distributed delay-lines. The clock driving and SRD coupling circuits improve the output power and transition speed. Using opamp and buffer IC’s for the clock driving circuithas greatly simplified the circuit design. In the SRD coupling circuit, a simple RC filter structure is used to achieve near optimal bias condition for the SRD without external, complicated bias control circuit. A backward decoupling circuit is designed to reduce ringing in the output monocycle pulse. Tuning of the output monocycle pulse duration is achieved by alternately switching on and off the p-i-n-diode pairs spatially located along the delay lines. The employed tuning method is easy to implement and results in a compact circuit structure. The developed tunable monocycle pulse transmitter achieves varying pulse duration from 0.4-1.2 ns, corresponding approximately to the operating frequency range of 0.15-3.7 GHz, and 200-400 mW of peak power. These results show that the designed monocycle transmitter with advanced tuning capability can be used for most short-range UWB applications, even for high-resolution radar applications such as UXO and land-mine detection. The impulse generator, developed along with the tunable monocycle pulse transmitter, exhibits a performance of 160-ps FWHM and 8-V peak amplitude and can also be used for UWB systems. Comparison between the tunable impulse generators employing p-i-n diodes and MESFETs as the switching elements shows the MESFET impulse generator produces relatively less distorted and more symmetric pulses than its p-i-n-diode counterpart. The MESFET tunable impulse generator also does not require DC blocking capacitors and is thus simpler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yarovoy, A., Ligthart, L.: Full-polarimetric video impulse radar for landmine detection: Experimental verification of main design ideas. In: Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, pp. 148–155 (2003)

    Google Scholar 

  2. Miller, E.K.: Time-Domain Measurements in Electromagnetics. Van Nostrand Reinhold, New-York (1986)

    Google Scholar 

  3. Nicolson, A.M.: Subnanosecond risetime pulse generators. IEEE Trans. Instrum. Meas. 25(2), 104–107 (June 1976)

    Article  Google Scholar 

  4. Sayadian, H.A., Li, M.G., Lee, C.H.: Generation of high-power broad-band microwave pulses by picosecond optoelectronic technique. IEEE Trans. Microw. Theory Techn. 37(1), 43–50 (January 1989)

    Article  Google Scholar 

  5. Forcia, R.J., Schamiloglu, E., Fleddermann, C.B.: Simple techniques for the generation of high peak power pulses with nanosecond and subnanosecond rise times. Rev. Sci. Instrum. 67(7), 2626–2629 (July 1996)

    Article  Google Scholar 

  6. Fontana, R.J., Richley, E.A., Beard, L.C., Barney, J.: A programmable ultra wideband signal generator for electromagnetic susceptibility testing. In: 2003 IEEE Conference on Ultra Wideband Systems and Technologies, pp. 21–25 (2003)

    Google Scholar 

  7. Andrews, J.R.: Picosecond pulse generators for UWB radars. Picosecond Pulse Labs, Boulder, CO, Application Note AN-9, May 2000

    Google Scholar 

  8. Daneshvar, K., Howard, L.: High current nanosecond pulse generator. In: Proceedings IEEE Southeastcon ’89, pp. 572–576 (1989)

    Google Scholar 

  9. Uhmeyer, U.A., Libby, J.C.: A fast variable transition time pulse generating circuit. In: Proceedings of the 9th IEEE Instrumentation and Measurement Technology Conference, pp. 152–157 (1992)

    Google Scholar 

  10. Han, J., Nguyen, C.: Ultra-wideband electronically tunable pulse generators. IEEE Microw. Wirel. Compon. Lett. 14(30), 112–114 (March 2004)

    Google Scholar 

  11. Lee, J.S., Nguyen, C.: A uniplanar picosecond pulse generator using step-recovery diode. Electron. Lett. 37(8), 504–506 (April 2001)

    Article  Google Scholar 

  12. Lee, J.S., Nguyen, C.: New uniplanar subnanosecond monocycle pulse generator and transformer for time-domain microwave applications. IEEE Trans. Microw. Theory Tech. 49(6), 1126–1129 (June 2001)

    Article  Google Scholar 

  13. Lee, J.S., Nguyen, C.: Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate. IEEE Microw. Wirel. Compon. Lett. 11(5), 208–210 (May 2001)

    Article  Google Scholar 

  14. Han, J., Nguyen, C.: A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing. IEEE Microw. Wirel. Compon. Lett. 12(6), 206–208 (June 2002)

    Article  Google Scholar 

  15. Lee, J.S., Nguyen, C., Scullion, T.: New uniplanar subnanosecond monocycle pulse generator and transformer for time-domain microwave applications. IEEE Trans. Microw. Theory Techn. 49(6), 1126–1129 (June 2001)

    Article  Google Scholar 

  16. Han, J., Nguyen, C.: Ultra-wideband electronically tunable pulse generators. IEEE Microw. Wireless Compon. Lett. 14(3), 112–114 (March 2004)

    Article  Google Scholar 

  17. Han, J.W., Nguyen, C.: On the Development of a Compact Sub-Nanosecond Tunable Monocycle Pulse Transmitter for UWB Applications. IEEE Trans. Microw. Theory Tech. MTT-54(1), 285–293 (January 2006)

    Google Scholar 

  18. Miao, M., Nguyen, C.: On the Development of an Integrated CMOS-Based UWB Tunable–Pulse Transmit Module. IEEE Trans. Microw. Theory Tech. MTT-54(10), 3681–3687 (October 2006)

    Article  Google Scholar 

  19. Lesha, M.J., Paoloni, F.J.: Generation of balanced subnanosecond pulses using step-recovery diodes. Electron. Lett. 31(7), 510–511 (March 1995)

    Article  Google Scholar 

  20. Pulse and waveform generation with step recovery diodes, Agilent Technologies Inc., Palo Alto, CA, Application Note 918 (1968)

    Google Scholar 

  21. Cormack, G.D., Sabharwal, A.P.: Picosecond pulse generator using delay lines. IEEE Trans. Instrum. Meas. 42(5), 947–948 (October 1993)

    Article  Google Scholar 

  22. Hamilton, S., Hall, R.: Shunt-mode harmonic generation using step recovery diodes. Microw. J. 69–78 (April 1967)

    Google Scholar 

  23. Moll, J.L., Hamilton, S.: Physical modeling of the step recovery diode for pulse and harmonic generation circuits. Proc. IEEE. 57(7), 1250–1259 (July 1969)

    Article  Google Scholar 

  24. Goldman, S.: Computer aids design of impulse multipliers. Microw. RF. 101–128 (October 1983)

    Google Scholar 

  25. Zhang, J., Räisänen, V.: Computer-aided design of step recovery diode frequency multipliers. IEEE Trans. Microw. Theory Tech. 44(12), 2612–2616 (December 1996)

    Article  Google Scholar 

  26. Millman, J., Taub, H.: Pulse, Digital, and Switching Waveforms. McGraw-Hill, New-York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cam Nguyen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, C., Han, J. (2014). UWB Transmitter Design. In: Time-Domain Ultra-Wideband Radar, Sensor and Components. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9578-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9578-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9577-2

  • Online ISBN: 978-1-4614-9578-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics