Skip to main content

Dietary oxalate and calcium oxalate stones: a theoretical or real concern?

  • Chapter
  • First Online:
Practical Controversies in Medical Management of Stone Disease

Abstract

Oxalate is the end product of several metabolic pathways in many life forms, including plants and humans. In humans and other animals, oxalate must be excreted because there is no biological need for oxalate. In humans, the ability to manage oxalate, which originates from both endogenous and exogenous sources, relies on control of its gastrointestinal absorption (in the case of exogenous oxalate), on the control of endogenous synthesis, and on renal oxalate handling. Because urinary oxalate excretion is a major cause of calcium oxalate urolithiasis, oxalate is of interest. Currently there are no pharmacologic agents designed to reduce oxalate biosynthesis, oxalate absorption, or renal oxalate excretion. While there are numerous nutrition-related strategies aimed at reducing high urine oxalate, there is debate about their effectiveness, largely due to lack of evidence in the biomedical literature.

In this chapter, the chemistry of oxalate is elucidated. Current medical management practices and their respective rationales are outlined, specifically focusing on areas of controversy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliano NP, Ellis MD. Oxalic acid: a prospective tool for reducing Varroa mite populations in package bees. Exp Appl Acarol 2009;48:303–9.

    CAS  PubMed  Google Scholar 

  2. Gillam DG, Coventry JF, Manning RH, Newman HN, Bulman JS. Comparison of two desensitizing agents for the treatment of cervical dentine sensitivity. Endod Dent Traumatol. 1997;13:36–9.

    CAS  PubMed  Google Scholar 

  3. Lazzarini L, Salvadori O. A reassessment of the formation of the patina called scialbatura. Stud Conser. 1989;34:20–6.

    Google Scholar 

  4. Russ J, Loyd DH, Boutton TW. A paleoclimate reconstruction for southwestern Texas using oxalate residue from lichen as a paleoclimate proxy. Quart Int. 2000;67:29–36.

    Google Scholar 

  5. Caliskan M. The metabolism of oxalate. Turk J Zool. 2000;24:103–6.

    CAS  Google Scholar 

  6. Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Ann Rev Plant Biol. 2005;56:41–71.

    CAS  Google Scholar 

  7. Cailleau G, Braissant O, Verrecchia EP. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree system. Biogeosciences. 2011;8:1755–67.

    CAS  Google Scholar 

  8. Beazley MJ, Rickman RD, Ingram DK, Boutton TW, Russ J. Natural abundances of carbon isotopes (14C, 13C) in lichens and calcium oxalate pruina: implications for archaeological and paleoenvironmental studies. Radiocarbon. 2002;44:675–83.

    CAS  Google Scholar 

  9. Freeman BC, Beattie GA. 2008. An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor. doi:10.1094/PHI-I-2008-0226-01.

    Google Scholar 

  10. Monje PV, Baran EJ. Characterization of calcium oxalates generated as biominerals in cacti. Plant Physiol. 2002;128:707–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat. Plant Physiol. 1998;117:753–9.

    CAS  PubMed Central  Google Scholar 

  12. Mithril C, Dragsted. LO. Safety evaluation of some wild plants in the New Nordic diet. Food Chem Toxicol. 2012;50:4461–7.

    CAS  PubMed  Google Scholar 

  13. Harvard School of Public Health Nutrition Department’s file. 2013. https://regepi.bwh.harvard.edu/health/Oxalate/files. Accessed 7 Aug 2013.

  14. Cartery C, Faquer S, Karras A, Cointault O, Buscail L, Modesto A, et al. Oxalate nephropathy associated with chronic pancreatitis. Clin J Am Soc Nephrol. 2011;6:1895–902.

    PubMed  Google Scholar 

  15. Fishbein GA, Micheletti RG, Currier JS, Singer E, Fishbein MC. Atherosclerotic oxalosis in coronary arteries. Cardiovasc Pathol. 2008;17:117–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. P. 2. Overview of Calcium. In: Ross AC, Taylor CL, Yaktine AL, et al., editors. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press (US); 2011.http://www.ncbi.nlm.nih.gov/books/NBK56060/. Accessed 8 Aug 2013.

  17. Knapp EL. Factors influencing the urinary excretion of calcium in normal persons. J Clin Invest. 1947;26:182–202.

    CAS  PubMed Central  Google Scholar 

  18. Trinchieri A. Diet and renal stone formation. Minerva Med. 2013;104:41–54.

    CAS  PubMed  Google Scholar 

  19. Dunlop JC. The excretion of oxalate acid in urine, and its bearing on the pathological condition known as oxaluria. J Pathol Bacteriol. 1896;3:389–429.

    CAS  Google Scholar 

  20. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59:270–6.

    CAS  PubMed  Google Scholar 

  21. Freel RW, Hatch M, Green M, Soleimani M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol. 2006;290:19–28.

    Google Scholar 

  22. Liu RH. Dietary bioactive compounds and their health implications. J Food Sci. 2013;78:A18–25.

    CAS  PubMed  Google Scholar 

  23. Martino HS, Martin BR, Weaver CM, Bressan J, Esteves EA, Costa NM. Zinc and iron bioavailability of genetically modified soybeans in rats. J Food Sci. 2007;72:689–95.

    Google Scholar 

  24. Baldwin H. An experimental study of oxaluria, with special reference to its fermentive origin. J Exp Med. 1900;5:27–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Shah J, Whitfield HN. Urolithiasis through the ages. BJU Int. 2002;89:801–10.

    PubMed  Google Scholar 

  26. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80:1146–58.

    CAS  PubMed  Google Scholar 

  27. Holmes RP, Kennedy M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 2000;57:1662–7.

    CAS  PubMed  Google Scholar 

  28. Taylor EN, Curhan GC. Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol. 2008;3:1453–60.

    CAS  PubMed  Google Scholar 

  29. Hallson PC, Rose GA. Crystalluria in normal subjects and in stone formers with and without thiazide and cellulose phosphate treatment. Br J Urol. 1976;48:515–24.

    CAS  PubMed  Google Scholar 

  30. Lopez M, Hoppe B. History, epidemiology and regional diversities of urolithiasis. Pedatr Nephrol. 2010;25:49–59.

    Google Scholar 

  31. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 2001;59:2290–8.

    CAS  PubMed  Google Scholar 

  32. Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73:489–96.

    CAS  PubMed  Google Scholar 

  33. Worcester EM. Stones from bowel disease. Endocrinol Metab Clin North Am. 2002;31:979–99.

    CAS  PubMed  Google Scholar 

  34. Juuti M, Heinonen OP, Alhava EM. Seasonal variation in urinary excretion of calcium, oxalate, magnesium and phosphate on free and standard mineral diet in men with urolithasis. Scand J Urol Nephrol. 1981;15:137–41.

    CAS  PubMed  Google Scholar 

  35. Robertson WG, Peacock M, Marshall RW, Speed R, Nordin BE. Seasonal variations in the composition of urine in relation to calcium stone-formation. Clin Sci Mol Med. 1975;49:597–602.

    CAS  PubMed  Google Scholar 

  36. Finlayson B. Physiochemical aspects of urolithiasis. Kidney Int. 1978;13:344–60.

    CAS  PubMed  Google Scholar 

  37. Robertson WG, Peacock M, Heyburn PJ, Marshall DH, Clark PB. Risk factors in calcium stone disease of the urinary tract. Br J Urol. 1978;50:449–54.

    CAS  PubMed  Google Scholar 

  38. Robertson WG, Peacock M. The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron. 1980;26:105–10.

    CAS  PubMed  Google Scholar 

  39. Rodgers A. Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation. J Am Soc Nephrol. 1999;10:S351–4.

    CAS  PubMed  Google Scholar 

  40. Caspary WF, Tonissen J, Lankisch PG. ‘Enteral’ hyperoxaluria. Effect of cholestyramine, calcium, neomycin, and bile acids on intestinal oxalate absorption in man. Acta Hepatogastroenterol (Stuttg). 1977;24:193–200.

    CAS  Google Scholar 

  41. Smith LH, Fromm H, Hofmann AF. Acquired hyperoxaluria, nephrolithiasis, and intestinal disease. Description of a syndrome. N Engl J Med. 1972;286:1371–5.

    CAS  PubMed  Google Scholar 

  42. Nordenvall B, Backman L, Larsson L, Tiselius HG. Effects of calcium, aluminum, magnesium and cholestyramine on hyperoxaluria in patients with jejunoileal bypass. Acta Chir Scand. 1983;149:93–8.

    CAS  PubMed  Google Scholar 

  43. Emmett M, Guirl MJ, Santa Ana CA, Porter JL, Neimark S, Hofmann AF, et al. Conjugated bile acid replacement therapy reduces urinary oxalate excretion in short bowel syndrome. Am J Kidney Dis. 2003;41:230–7.

    PubMed  Google Scholar 

  44. Siener R, Petzold J, Bitterlich N, Alteheld B. Metzner C. Determinants of urolithiasis in patients with intestinal fat malabsorption. Urology. 2013;81:17–24.

    PubMed  Google Scholar 

  45. Rankin AC, Walsh SB, Summers SA, Owen MP, Mansell MA. Acute oxalate nephropathy causing late renal transplant dysfunction due to enteric hyperoxaluria. Am J Transplant. 2008;8:1755–8.

    CAS  PubMed  Google Scholar 

  46. Miyaoka R, Monga M. Use of traditional Chinese medicine in the management of urinary stone disease. Int Braz J Urol. 2009;35:396–405.

    PubMed  Google Scholar 

  47. Siener R, Jansen B, Watzer B, Hesse A. Effect of n-3 fatty acid supplementation on urinary risk factors for calcium oxalate stone formation. J Urol. 2011;185:719–24.

    CAS  PubMed  Google Scholar 

  48. Lange J, Mufarrij P, Easter L, Knight J, Holmes R, Assimos D. The impact of fish oil supplementation on endogenous oxalate synthesis and urinary oxalate excretion. J Urol. 2013;189:e925.

    Google Scholar 

  49. Mydlik M, Derzsiova K. Vitamin B6 and oxalaic acid in clinical nephropathy. J Ren Nutr. 2010;20:S95–102.

    CAS  PubMed  Google Scholar 

  50. Ortiz-Alvarado O, Miyaoka R, Kriedberg C, Moeding A, Stessman M, Monga M. Pyridoxine and dietary counseling for the management of idiopathic hyperoxaluria in stone-forming patients. Urology. 2011;77:1054–8.

    PubMed  Google Scholar 

  51. Dahiya T, Pundir CS. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria. Indian J Med Res. 2013;137:136–41.

    PubMed  Google Scholar 

  52. Sahin N. Oxalotrophic bacteria. Res Microbiol. 2003;154:399–407.

    CAS  PubMed  Google Scholar 

  53. Liebman M, Al-Wahsh IA. Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr. 2011;2:254–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Abratt VR, Reid SJ. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol. 2010;72:63–87.

    CAS  PubMed  Google Scholar 

  55. Lieske JC, Goldfarb DS, De Simone C, Regnier C. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 2005;68:1244–9.

    CAS  PubMed  Google Scholar 

  56. Fink HA, Akornor JW, Garimella PS, MacDonald R, Cutting A, Rutks IR, et al. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur Urol. 2009;56:72–80.

    PubMed Central  PubMed  Google Scholar 

  57. Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010;78:1178–85.

    CAS  PubMed  Google Scholar 

  58. Pang R, Linnes MP, O’Connor HM, Li X, Bergstralh E, Lieske JC. Controlled metabolic diet reduces calcium oxalate supersaturation but not oxalate excretion after bariatric surgery. Urology. 2012;80:250–4.

    PubMed Central  PubMed  Google Scholar 

  59. Taylor EN, Curhan GC. Oxalate intake and the risk for nephrolithiasis. J Am Soc Nephrol. 2007;18:2198–204.

    CAS  PubMed  Google Scholar 

  60. Penniston KL, Wojciechowski KF, Nakada SY. Dietary oxalate: what’s important and what isn’t for patients with calcium oxalate stones? J Urol. 2011;185:e824–5.

    Google Scholar 

  61. Pak CY, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW. Rapid communication: relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004;66:2032–7.

    CAS  PubMed  Google Scholar 

  62. Maalouf NM, Adams Huet B, Pasch A, Lieske JC, Asplin JR, Siener R, et al. Variability in urinary oxalate measurements between six international laboratories. Nephrol Dial Transplant. 2011;26:3954–9.

    Google Scholar 

  63. Penniston KL, Jones AN, Nakada SY, Hansen KE. Vitamin D repletion does not alter urinary calcium excretion in healthy postmenopausal women. BJU Int. 2009;104:1512–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Massey LK. Food oxalate: factors affecting measurement, biological variation, and bioavailability. J Am Diet Assoc. 2007;107:1191–4.

    PubMed  Google Scholar 

  65. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev. 2012;70:S10–3.

    PubMed  Google Scholar 

  67. Barner HH, Gallimore EJ. The metabolism of oxalic acid in the animal body. Biochem J. 1940;34:144–8.

    Google Scholar 

  68. Talapatra SK, Ray SC, Sen KC. Calcium assimilation in ruminants on oxalate-rich diet. J Agri Sci. 1948;38:163–73.

    CAS  Google Scholar 

  69. Morris MP, Garcia-Rivera J. The destruction of oxalate by rumen contents of cows. J Dairy Sci. 1955;38:1169.

    CAS  Google Scholar 

  70. Allison MJ, Cook HM. Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science. 1981;212:675–6.

    CAS  PubMed  Google Scholar 

  71. Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM, et al. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol. 2011;22:2247–55.

    CAS  PubMed  Google Scholar 

  72. Knight J, Jiang J, Wood KD, Holmes RP, Assimos DG. Oxalate and sucralose absorption in idiopathic calcium oxalate stone formers. Urology. 2011;78:e9–13.

    PubMed  Google Scholar 

  73. Voss S, Hesse A, Zimmerman DJ, Sauerbruch T, von Unruh GE. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: measurements with the [(13)C2] oxalate absorption test. J Urol. 2006;175:1711–5.

    CAS  PubMed  Google Scholar 

  74. Penniston KL, Nakada SY. Effect of dietary changes on urinary oxalate excretion and calcium oxalate supersaturation in patients with hyperoxaluric stone formation. Urology. 2009;73:484–9.

    PubMed  Google Scholar 

  75. Lange JN, Wood KD, Mufarrij PW, Callahan MF, Easter L, Knight J, et al. The impact of dietary calcium and oxalate ratios on stone risk. Urology. 2012;79:1226–9.

    PubMed  Google Scholar 

  76. Voss S, Zimmerman DJ, Hesse A, von Unruh GE. The effect of oral administration of calcium and magnesium on intestinal oxalate absorption in humans. Isotopes Environ Health Stud. 2004;40:199–205.

    CAS  PubMed  Google Scholar 

  77. Zimmerman DJ, Voss S, von Unruh GE, Hesse A. Importance of magnesium in absorption and excretion of oxalate. Urol Int. 2005;74:262–7.

    Google Scholar 

  78. Massey L. Magnesium therapy for nephrolithiasis. Magnes Res. 2005;18:123–6.

    CAS  PubMed  Google Scholar 

  79. Borghi L, Nouvenne A, Meschi T. Probiotics and dietary manipulations in calcium oxalate nephrolithiasis: two sides of the same coin? Kidney Int. 2010;78:1063–5.

    CAS  PubMed  Google Scholar 

  80. Weese JS, Weese HE, Yuricek L, Rousseau J. Oxalate degradation by intestinal lactic acid bacteria in dogs and cats. Vet Microbiol. 2004;101:161–6.

    CAS  PubMed  Google Scholar 

  81. Rampton DS, Kasidas GP, Rose GA, Sarner M. Oxalate loading test: a screening test for steatorrhoea. Gut. 1979;20:1089–94.

    CAS  PubMed  Google Scholar 

  82. Steiner MS, Morton RA. Nutritional and gastrointestinal complications of the use of bowel segments in the lower urinary tract. Urol Clin North Am. 1991;18:743–54.

    CAS  PubMed  Google Scholar 

  83. Naya Y, Ito H, Masai M, Yamaguchi K. Effect of dietary intake on urinary oxalate excretion in calcium oxalate stone formers in their forties. Eur Urol. 2000;37:140–4.

    CAS  PubMed  Google Scholar 

  84. Naya Y, Ito H, Masaai M, Yamaguchi K. Association of dietary fatty acids with urinary oxalate excretion in calcium oxalate stone-formers in their fourth decade. BJU Int. 2002;89:842–6.

    CAS  PubMed  Google Scholar 

  85. Bailly GG, Norman RW, Thompson C. Effects of dietary fat on the urinary risk factors of calcium stone disease. Urology. 2000;56:40–4.

    CAS  PubMed  Google Scholar 

  86. Taylor EN, Curhan GC. Body size and 24-hour urine composition. Am J Kidney Dis. 2006;48:905–15.

    CAS  PubMed  Google Scholar 

  87. Eisner BH, Eisenberg ML, Stoller ML. Relationship between body mass index and quantitative 24-hour urine chemistries in patients with nephrolithiasis. Urology. 2010;75:1289–93.

    PubMed  Google Scholar 

  88. Baxmann AC, De O G Mendonca C, Heilberg IP. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 2003;63:1066–71.

    CAS  PubMed  Google Scholar 

  89. Massey LK, Liebman M, Kynast-Gales SA. Ascorbate increases human oxaluria and kidney stone risk. J Nutr. 2005;135:1673–7.

    CAS  PubMed  Google Scholar 

  90. Harris KS, Richardson KE. Glycolate in the diet and its conversion to urinary oxalate in the rat. Invest Urol. 1980;18:106–9.

    CAS  PubMed  Google Scholar 

  91. Ribaya JD, Gershoff SN. Factors affecting endogenous oxalate synthesis and its excretion in feces and urine in rats. J Nutr. 1982;112:2161–9.

    CAS  PubMed  Google Scholar 

  92. Taylor EN, Curhan GC. Fructose consumption and the risk of kidney stones. Kidney Int. 2008;73:207–12.

    CAS  PubMed  Google Scholar 

  93. Nguyen NU, Dumoulin G, Henriet MT, Regnard J. Increase in urinary calcium and oxalate after fructose infusion. Horm Metab Res. 1995;27:155–8.

    CAS  PubMed  Google Scholar 

  94. Traxer O, Huet B, Poindexter J, Pak CY, Pearle MS. Effect of ascorbic acid consumption on urinary stone risk factors. J Urol. 2003;170:397–401.

    CAS  PubMed  Google Scholar 

  95. Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173:386–8.

    PubMed  Google Scholar 

  96. Knight J, Assimos DG, Easter L, Holmes RP. Metabolism of fructose to oxalate and glycolate. Horm Metab Res. 2010;42:868–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Bray GA. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr. 2013;4:220–5.

    CAS  PubMed  Google Scholar 

  98. Eilliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002;76:911–22.

    Google Scholar 

  99. Marriott BP, Cole N, Lee E. National estimates of dietary fructose intake increased from 1977–2004 in the United States. J Nutr. 2009;139:1228S–35S.

    CAS  PubMed  Google Scholar 

  100. Nguyen QV, Kalin A, Drouve U, Casez JP, Jaeger P. Sensitivity to meat protein intake and hyperoxaluria in idiopathic calcium stone formers. Kidney Int. 2001;59:2273–81.

    CAS  PubMed  Google Scholar 

  101. Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006;70:1929–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Knight J, Easter LH, Neiberg R, Assimos DG, Holmes RP. Increased protein intake on controlled oxalate diets does not increase urinary oxalate excretion. Urol Res. 2009;37:63–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol. 1999;10:840–5.

    CAS  PubMed  Google Scholar 

  104. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J Urol. 1996;155:1847–51.

    CAS  PubMed  Google Scholar 

  105. Kaelin A, Casez JP, Jaeger P. Vitamin B6 metabolites in idiopathic calcium stone formers: no evidence for a link to hyperoxaluria. Urol Res. 2004;32:61–8.

    CAS  PubMed  Google Scholar 

  106. Rao TV, Choudhary VK. Effect of pyridoxine (vitamin B6) supplementation on calciuria and oxaluria levels of some normal healthy persons and urinary stone patients. Indian J Clin Biochem. 2005;20:166–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Rattan V, Sidhu H, Vaidyanathan S, Thind SK, Nath R. Effect of combined supplementation of magnesium oxide and pyridoxine in calcium-oxalate stone formers. Urol Res. 1994;22:161–5.

    CAS  PubMed  Google Scholar 

  108. Edwards P, Nemat S, Rose GA. Effects of oral pyridoxine upon plasma and 24-hour urinary oxalate levels in normal subjects and stone forms with idiopathic hypercalciuria. Urol Res. 1990;18:393–6.

    CAS  PubMed  Google Scholar 

  109. Siener R, Alteheld B, Terjung B, Junghans B, Bitterlich N, Stehle P, et al. Change in the fatty acid pattern of erythrocyte membrane phospholipids after oral supplementation of specific fatty acids in patients with gastrointestinal diseases. Eur J Clin Nutr. 2010;64:410–8.

    CAS  PubMed  Google Scholar 

  110. Buck AC, Davied RL, Harrison T. The protective role of eicosapentaenoic acid (EPA) in the pathogenesis of nephrolithiasis. J Urol. 1991;146:188–94.

    CAS  PubMed  Google Scholar 

  111. Hammarsten G. Dietetic therapy in the formation of calcium oxalate calculi in the urinary passage. Acta Physiol. 1938;80:165–75.

    CAS  Google Scholar 

  112. Prieto RM, Fiol M, Perello J, Estruch R, Ros E, Sanchis P, Grases F. Effects of Mediterranean diets with low and high proportions of phytate-rich foods on the urinary phytate excretion. Eur J Nutr. 2010;49:321–6.

    CAS  PubMed  Google Scholar 

  113. Meschi T, Maggiore U, Fiaccadori E, Schianchi T, Bosi S, Adorni G, et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int. 2002;66:2402–10.

    Google Scholar 

  114. Eisner BH, Asplin JR, Goldfarb DS, Ahmad A, Stoller ML. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment. J Urol. 2010;183:2419–23.

    CAS  PubMed  Google Scholar 

  115. Baia Lda C, Baxmann AC, Moreira SR, Holmes RP, Heilberg IP. Noncitrus alkaline fruit: a dietary alternative for the treatment of hypocitraturic stone formers. J Endourol. 2012;26:1221–6.

    PubMed  Google Scholar 

  116. Aras B, Kalfazade N, Tuqcu V, Kemahli E, Ozbay B, Polat H, et al. Can lemon juice be an alternative to potassium citrate in the treatment of urinary calcium stones in patients with hypocitraturia? A prospective randomized study. Urol Res. 2008;36:313–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina L. Penniston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Penniston, K. (2014). Dietary oxalate and calcium oxalate stones: a theoretical or real concern?. In: Pearle, M., Nakada, S. (eds) Practical Controversies in Medical Management of Stone Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9575-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9575-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9574-1

  • Online ISBN: 978-1-4614-9575-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics