Skip to main content

Vigna

  • Chapter
  • First Online:

Abstract

The genus Vigna comprises more than 200 species of which 7 are of tremendous agronomic importance. These are grown mainly in the warm temperate and tropical regions of the world. Valued for their grains with high and easily digestible proteins, these crops are also known as forage, green manure, and cover crops. Due to a short life cycle, these are suitable as catch crops and also fit well in intercropping, mixed or relay cropping. For genetic improvement of cultivated vignas, mainly cultivated germplasm and exotic lines have been used so far. However, despite development of several improved cultivars in different Vigna crops, biotic and abiotic stresses still remain the major constraints in realizing their true yield potential. While plethora of genes conferring resistance/tolerance to these stresses have already been transferred from cultivated germplasm, wild genetic resources offer additional sources of useful alien variation which can be incorporated in cultivated Vigna through alien gene transfer. With better understanding of the processes behind pollen germination and pollen tube growth, fertilization, embryo and endosperm development and inheritance pattern, strategies have been developed to avoid pre- and post-fertilization barriers in successful distant hybridization leading to alien gene transfer. These include making reciprocal crosses, repeated pollination, hormonal treatment of flower buds, polyploidization, use of bridge species and most importantly, embryo rescue which have increased success rate of alien gene transfer in Vigna through sexual hybridization. Nevertheless, alien gene transfer through genetic transformation and use of molecular breeding tools still lag behind in Vigna and therefore need special attention. The significant achievements made in different Vigna species in alien gene transfer and their utilization have been discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn CS, Hartmann RW (1978a) Interspecific hybridization between mungbean Vigna radiata L. Wilczek. and adzuki bean Vigna angularis Wild. Ohwi and Ohashi. J Am Soc Hort Sci 103:435–438

    Google Scholar 

  • Ahn CS, Hartmann RW (1978b) Interspecific hybridization among four species of the genus Vigna Savi. In: Report of first international mungbean symposium, Univ. Philippines, Los Banios, p 240–246

    Google Scholar 

  • Al-Yasiri SA, Coyne DP (1966) Interspecific hybridization in the genus Phaseolus. Crop Sci 6:59–60

    Article  Google Scholar 

  • Avenido RA, Hautea DM, Mendoza CJ, Carandang SL (1991) Clonal propagation of F1 hybrids of mungbean (Vigna radiata L. Wilczek) × blackgram (V. mungo L. Hepper) by tissue culture. Philipp J Crop Sci 16:63–67

    Google Scholar 

  • Babu CR, Sharma SK, Chaterjee SR, Abrol YP (1988) Seed protein and amino acid compositions of wild Vigna radiata var. sublobata (Fabaceae) & two cultigens V. mungo and V. radiata. Econ Bot 42:54–61

    Article  CAS  Google Scholar 

  • Barone A, Del Guidice A, Ng NQ (1992) Barriers to interspecific hybridization between Vigna unguiculata and V. vexillata. Sex Plant Reprod 5:195–200

    Article  Google Scholar 

  • Baudoin JP, Marechal R (1988) Taxonomy and evolution of the genus Vigna: Mungbean. In: Proceedings of second international symposium. AVRDC, Bangkok, Shanhua, Taiwan

    Google Scholar 

  • Beaudry JR (1951) Seed development following the mating of Elymus virginicus L. and Agropyron repens L. Beauv. Genetics 36:109–126

    CAS  PubMed  Google Scholar 

  • Bharathi A, Vijay Selvraj KS, Veerabadhiran P, Subba Lakshami B (2006) Crossability barriers in mungbean (Vigna radiata L. Wilczek): with its wild relatives. Ind J Crop Sci 1:120–124

    Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Shia Parkash N, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper by overexpression of glyoxalase 1 gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breeding 22:169–181

    Article  CAS  Google Scholar 

  • Birch ANE, Fellows LE, Evans SV, Doharty K (1986) Para-aminophenyldanine in Vigna: possible taxonomic and ecological significance as a seed defence against bruchids. Phytochemistry 25:2745–2749

    Article  CAS  Google Scholar 

  • Bisht IS, Bhat KV, Lakhanpaul S (2005) Diversity and genetic resources of wild Vigna species in India. Genet Resour Crop Evol 52:53–68

    Article  Google Scholar 

  • Biswas MR, Dana S (1975) Black gram × rice bean cross. Cytologia 40:787–795

    Google Scholar 

  • Chaisan T, Somta P, Srinives P, Chanprame S, Kaveeta R, Dumrongkittikule S (2013) Development of tetraploid plants from an interspecific hybrid between mungbean (Vigna radiata) and rice bean (Vigna umbellata). J Crop Sci Biotec 16:45–51

    Article  Google Scholar 

  • Chandel KPS, Laster RN (1991) Origin and evolution of Asiatic Vigna species. In: Golden jubilee celebration symposium on grain legumes. Sharma B, Mehra RB (eds). IARI, New Delhi, India, p 25–45

    Google Scholar 

  • Chandel KPS, Lester RN, Starling RJ (1984) The wild ancestors of urd and mungbeans [Vigna mungo (L.) Hepper and V. radiata (L.) Wilczek]. Bot J Linn Soc 89:85–96

    Article  Google Scholar 

  • Chaudhary D, Madanpotra S, Jaiwal R, Saini R, Kumar PA, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea Vigna unguiculata L. cultivar and transmission of transgenes into progeny. Plant Sci 172:692–700

    Article  CAS  Google Scholar 

  • Chavan VM, Patil GD, Bhapkar DG (1966) Improvement of cultivated Phaseolus species-need for interspecific hybridization. Indian J Genet Plant Breed 26:152–154

    Google Scholar 

  • Chen NC, Baker RL, Honma S (1983) Interspecific crossability among four species of Vigna food legumes. Euphytica 32:925–937

    Article  Google Scholar 

  • Chen HK, Mok MC, Shanmugasundaram S, Mok DWS (1989) Interspecific hybridization between Vigna radiata (L.)Wilczek and V. glabrescens. Theor Appl Genet 78:641–647

    CAS  PubMed  Google Scholar 

  • Chen HK, Mok MC, Mok DWS (1990) Somatic embryogenesis and shoot organogenesis from interspecific hybrid embryos of Vigna glabrescens and V. radiata. Plant Cell Rep 9:77–79

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Tsuda S, Matsui K, Fukuchi-Mizutani M, Ochiai M, Shimizu S, Sakuradani F, Aoki T, Imaizumi R, Ayube S, Tanaka Y (2005) Production of linolenic acid in Lotus japonicus and Vigna angularis by expression of D6-fatty acid desaturase gene isolated from Mortierella alpina. Plant Sci 169:599–605

    Article  CAS  Google Scholar 

  • Chowdhury RK, Chowdhury JB (1983) Compatibility between Vigna radiata (L.) Wilczek and Vigna umbellata (Thumb) Ohwi and Ohashi. Genetica Agraria 37:257–266

    Google Scholar 

  • Dana S (1964) Interspecific cross between tetraploid Phaseolus species and P. ricciardianus. Nucleus 7:1–10

    Google Scholar 

  • Dana S (1966) Cross between Phaseolus aureus and P. mungo. Genetica 37:259–274

    Article  Google Scholar 

  • Dana S (1968) Hybrid between Phaseolus mungo and tetraploid Phaseolus species. Japan. J Genet 43:153–155

    Google Scholar 

  • Dana S, Karmakar PG (1990) Species relation in Vigna subgenus Ceratotropis and its implications in breeding. Plant Breed Rev 8:19–42

    Google Scholar 

  • Dar GM, Verma MM, Gosal SS, Brar JS (1991) Characterization of some interspecific hybrids and amphiploids in Vigna. In: Golden jubilee celebration symposium on grain legumes. Sharma B, Mehra RB (eds). Indian Society of Genetics and Plant Breeding, New Delhi, India, p 73–78

    Google Scholar 

  • De DN, Krishnan R (1966) Cytological studies of the hybrid Phaseolus aureus X P. mungo. Genetica 37:588–600

    Article  Google Scholar 

  • deCandolle A (1884) Origine des plantes cultives. Nabu Press, USA, p 424

    Google Scholar 

  • Dongre TK, Pawar SE, Thakare RG, Harwalkar MR (1996) Identification of resistant source to cowpea weevil [Callosobruchus maculatus (F.)] in Vigna sp. and inheritance of their resistance in black gram (Vigna mungo var. mungo). J Stored Prod Res 32:201–204

    Article  Google Scholar 

  • Egawa Y, Bujang IB, Chotechuen S, Tomooka N, Tateishi Y (1996) Phylogenetic differentiation of tetraploid Vigna species, V. glabrescens and V. reflexo-pilosa. JIRCAS Journal 3:49–58

    Google Scholar 

  • Egawa Y, Takeda H, Suzuki K (1999) Research plan on crop heat tolerance at the crop introduction and cultivation laboratory. Japan Int Res Center Agric Sci Working Rep 14:103–107

    Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204

    Article  Google Scholar 

  • El-Shemy HA, Khalafalla MM, Wakasa K, Ishimoto M (2002) Reproducible transformation in two grain legumes- soybean and azuki bean using different system. Cell Mol Biol Lett 7:709–719

    CAS  PubMed  Google Scholar 

  • Ezuch MI (1982) Effect of planting date on pest infestation, yield and harvest quality of cowpea (Vigna unguiculata). Exp Agri 18:311–318

    Article  Google Scholar 

  • FAOSTAT (2013). http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed 14 Aug 2013

  • Fatokun CA (1991) Wide hybridization in cowpea: problems and prospects. Euphytica 54:137–140

    Google Scholar 

  • Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens Wilc. and Vigna unguiculata (L.) Walp. through embryo culture. Plant cell Tissue Organ Cult 9:229–233

    Article  Google Scholar 

  • Fujii K, Miyazaki S (1987) Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis (L.)(Coleoptera:Bruchidae) and its relationship with cytogenetic classification. Appl Ent Zool 22:229–230

    Google Scholar 

  • Fujii K, Ishimoto M, Kitamura K (1989) Pattern of resistance to bean weevil Bruchidae. in Vigna radiata-mungo-sublobata complex inform the breeding of new resistant varieties. Appl Ent Zool 24:126–132

    Google Scholar 

  • Gill AS, Verma MM, Dhaliwal HS, Sandhu TS (1983) Interspecific transfer of resistance to mungbean yellow mosaic virus from Vigna mungo to Vigna radiata. Curr Sci 52:31–33

    Google Scholar 

  • Glowacka K, Jezowski S, Kaczmarek Z (2010) In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind Crops Prod 32:88–96

    Article  CAS  Google Scholar 

  • Gomathinayagam P, Ram SG, Rathnaswamy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata and V. vexillata through in vitro embryo culture. Euphytica 102:203–209

    Article  Google Scholar 

  • Gopinathan MC, Babu CR (1986) A unique growth pattern associated with cleistogamy in a tropical legume, Vigna minima Roxb. Ohwi and Ohashi Leguminosae. Bot J Linn Soc 92:263–268

    Article  Google Scholar 

  • Gopinathan MC, Babu CR, Shivanna KR (1986) Interspecific hybridization between rice bean (Vigna umbellata) and its wild relative (V. minima), fertility sterility relationships. Euphytica 35:1017–1022

    Article  Google Scholar 

  • Gosal SS, Bajaj YPS (1983a) In vitro hybridization in an incompatible cross-black gram × green gram. Curr Sci 52:556–557

    Google Scholar 

  • Gosal SS, Bajaj YPS (1983b) Interspecific hybridization between Vigna mungo and Vigna radiata through embryo culture. Euphytica 32:129–137

    Article  Google Scholar 

  • Gupta VP, Plaha P, Rathore PK (2002) Partially fertile interspecific hybrids between a black gram X green gram derivative and adzuki bean. Plant Breed 121:182–183

    Article  Google Scholar 

  • Harlan JR (1971) Agricultural origins: centers and noncenters. Science 174:468–474

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Ignacimuthu S, Babu CR (1987) Vigna radiata var. sublobata (Fabaceae): economically useful wild relative of urd and mungbeans. Econ Bot 41:418–422

    Article  Google Scholar 

  • IITA (1988) Annual report and research highlights 1987/1988. International institute of tropical agriculture. IITA, Ibadan, Nigeria

    Google Scholar 

  • Jain HK, Mehra KL (1980) Evaluation, adaptation, relationship and cases of the species of Vigna cultivation in Asia. In: Summerfield RJ, Butnting AH (eds) Advances in legume science. Royal Botanical Garden, Kew, Lodon, pp 459–468

    Google Scholar 

  • Kaga A, Ishimoto M (1998) Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L.Wilczek). Mol Gen Genet 258:378–384

    Article  CAS  PubMed  Google Scholar 

  • Kaga A, Isemura T, Tomooka N, And Vaughan DA (2008) The genetics of domestication of the azuki bean. Genetics 178:1013–1036

    Article  CAS  PubMed  Google Scholar 

  • Karmakar PG, Dana S (1987) Cytogenetic identification of a Vigna sublobata collection. Nucleus 30:47–50

    Google Scholar 

  • Karthikeyan AS, Sharma KS, Veluthambi K (1996) Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep 15:328–331

    Article  CAS  PubMed  Google Scholar 

  • Kashiwaba K, Tomooka N, Kaga A, Han OK, Vaughan DA (2003) Characterization of resistance to three bruchid species (Callosobruchus spp. Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata). J Econ Entomol 6:207–213

    Article  Google Scholar 

  • Khalafalla MM, El-Shemy HA, Mizanur RS, Teraishi M, Ishimoto M (2005) Recovery of herbicide resistant azuki bean (Vigna angularis) plants via Agrobacterium mediated transformation. Afr J Biotech 4:61–67

    CAS  Google Scholar 

  • Konarev AV, Tomooka N, Vaughan DA (2002) Proteinase inhibitor polymorphism in the genus Vigna Savi subgenus Ceratotropis and its biosystematic implications. Euphytica 123:165–177

    Article  CAS  Google Scholar 

  • Koona P, Osisanya EO, Jackai LEN, Tamo M, Kham RH (2002) Resistance in accessions of cowpea to the coreid pod bug Clavigralla tomentosicollis (Hemiptera: coreidae). J Econ Entomol 95:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Kouadio D, Echikh N, Toussaint A, Pasquet RS, Baudoin JP (2007) Organization of the gene pool of Vigna unguiculata (L.) Walp., crosses between the wild and cultivated forms of cowpea. Biotechnol Agro Soc Environ 11:47–57

    Google Scholar 

  • Krishnan R, De DN (1968) Cytogenetical studies in Phaseolus II. Phaseolus mungo × tetraploid phaseolus species and the amphidiploid. Indian J Genet Plant Breed 28:23–30

    Google Scholar 

  • Kumar S, Gupta S, Chandra S, Singh BB (2004) How wide is the genetic base of pulse crops? In: Ali M, Singh BB, Kumar S, Dhar V (eds) Pulses in new perspective. Indian Society of Pulses Research and Development, Kanpur, India, pp 211–221

    Google Scholar 

  • Kumar NP, Pandiyan M, Veerabadhiran P (2007) Pre-fertilization barriers in Vigna radiata × Vigna umbellata. Plant Arch 7:377–380

    Google Scholar 

  • Kumar S, Imtiaz M, Gupta S, Pratap A (2011) Distant hybridization and alien gene introgression. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, UK, pp 81–110

    Google Scholar 

  • Lawn RJ, Cottell A (1988) Wild mungbean and its relative in Australia. Biologist 35:267–273

    Google Scholar 

  • Lawn R, Williams W, Imrie BC (1988) Potential of wild germplasm as a source of tolerance to environmental stresses in mungbean. In: Proc. 2nd international symposium. AVRDC, Taiwan, p 136–145

    Google Scholar 

  • Machado M, Tai W, Baker LR (1982) Cytogenetic analysis of the interspecific hybrid Vigna radiata × V. umbellata. J Hered 73:205–208

    Google Scholar 

  • Mahalakshmi SL, Leela T, Kumar MS (2006) Enhanced genetic efficiency of mungbean by use of primary leaf explants. Curr Sci 91:93–98

    CAS  Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into cultivated pigeonpea. C Cajan Euphytica 149:161–167

    Article  CAS  Google Scholar 

  • Marechal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un groupe complexe d’speces des genres Phaseolus et Vigna (Papilionaceae). sur la base de donnees morphologiques et polliniques, traitees par l’analyse informatique. Boissiera 28:177–178

    Google Scholar 

  • Miyagi M, Humphry M, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiataL. Wilczek). Theor Appl Genet 110:151–156

    Article  CAS  PubMed  Google Scholar 

  • Miyashita C, Ishikawa S, Mii M (2009) In vitro induction of the amphiploid in interspecific hybrid of blueberry (Vaccinium corymbosum × Vaccinium ashei) with colchicine treatment. Scientia Hort 122:375–379

    Article  CAS  Google Scholar 

  • Miyazaki S (1982) Classification and phylogenetic relationships of the Vigna radiata-mungo-sublobata complex. Bull Natl Inst Agric Sci D 33:1–61

    Google Scholar 

  • Miyazaki S, Kawakami J, Ishikura N (1984) Phylogenetic relationship and classification of Vigna radiata-mungo complex. JARQ 17:225–229

    Google Scholar 

  • Mohammed MS, Russon Z, Abdul SD (2010) Studies on crossability between cultivated cowpea Vigna unguiculata [L.]Walp. varieties and their wild relative var. pubescens TVNu110–3A. Int. J Res Plant Sci 1:133–135

    Google Scholar 

  • Muruganantham M, Amutha S, Selvaraj N, Vengadesan G, Ganapathi A (2007) Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant 43:550–557

    Article  CAS  Google Scholar 

  • Nagaraj NC, Muniyappa V, Satyan BA, Shanmugam N, Jayarajan R, Vidhyasekaran P (1981) Resistance source for mungbean yellow mosaic virus. In: Proceedings of the national seminar on disease resistance in crop plants, p 69–72

    Google Scholar 

  • Pal M, Ghosh U, Chandra M, Biswas BB (1991) Transformation and regeneration of mungbean (Vigna radiata). Indian J Biochem Biol 28:449–455

    Google Scholar 

  • Pal SS, Singh JJ, Singh I (2000) Transfer of YMV resistance in cultivar SML32 of Vigna radiata from other related Vigna species. Plant Dis Res 15:67–69

    Google Scholar 

  • Pal SS, Sandhu JS, Singh I (2005) Exploitation of genetic variability in interspecific cross between Vigna mungo × V. umbellata. Indian J Pulses Res 18:9–11

    Google Scholar 

  • Palmer JL, Lawn RJ, Atkins SW (2002) An embryo rescue protocol for Vigna interspecific hybrids. Australian J Bot 50:331–338

    Article  Google Scholar 

  • Pande K, Raghuvanshi SS, Prakash D (1990) Induced high yielding amphiploid of Vigna radiata × V. mungo. Cytologia 55:249–253

    Article  Google Scholar 

  • Pandiyan M, Ramamoorthi N, Ganesh SK, Jebraj S, Pagarajan P, Balasubramanian P (2008) Broadening the genetic base and introgression of MYMY resistance and yield improvement through unexplored genes from wild relatives in mungbean. Plant Mut Rep 2:33–38

    Google Scholar 

  • Pandiyan M, Senthil N, Ramamoorthi N, Muthiah AR, Tomooka N, Duncan V, Jayaraj T (2010) Interspecific hybridization of Vigna radiata × 13 wild Vigna species for developing MYMV donar. Electron J Plant Breed 1:600–610

    Google Scholar 

  • Pandiyan M, Senthil N, Suresh R, Chakravarthy N, Packiraj D, Jagadeesh S (2012) Interspecific hybridization of Vigna radiata × V. trilobata. Wudpecker J Agr Res 1:33–234

    Google Scholar 

  • Percy RG (1986) Effects of environment upon ovule abortion in interspecific F1 hybrids and single species cultivars of cotton. Crop Sci 26:938–942

    Article  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Kumar J (2011) History origin and evolution. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire

    Google Scholar 

  • Pratap A, Gupta DS, Rajan N (2012a) Mungbean. In: Bharadwaj D (ed) Breeding Indian field crops. Agrobios Publishers, New Delhi, pp 208–227

    Google Scholar 

  • Pratap A, Joseph John K, Basu PS (2012b) Identification of photo-thermo insensitive wild accessions of Vigna. Pulses Newslet 23:3

    Google Scholar 

  • Pratap A, Gupta DS, Singh BB, Kumar S (2013a) Development of super early genotypes in greengram [Vigna radiata (L.)Wilczek]. Legume Res 36:105–110

    Google Scholar 

  • Pratap A, Gupta DS, Singh BB, Kumar S (2013b) IPM 205–7 (IC0589309-IC0589310; INGR11043-INGR11044), a mungbean [Vigna radiata (L.)Wilczek] germplasm with super early maturity. Indian J Plant Genet Res 26:89–90

    Google Scholar 

  • Rashid KA, Smartt J, Haq N (1988) Hybridization in the genus Vigna. In: Mungbean, Proceeding of the second international symposium. Shanmugasundaram S, Mclean BT (eds), Asian Vegetable Research and Development Centre, Shanhua, Taiwan, p 205–214

    Google Scholar 

  • Ravi, Singh, JP, Minocha JL (1987) Meiotic behaviour of interspecific hybrids of Vigna radiata × V. mungo. In: Proceedings of the first symposium on crop improvement, Tamil Nadu Agricultural University, Coimbatore, India, p 58–59

    Google Scholar 

  • Rawal KM (1975) Natural hybridization among wild, weedy and cultivated Vigna unguiculata L.Walp. Euphytica 24:699–707

    Article  Google Scholar 

  • Reddy KR, Singh DP (1989) Transgressive segregation in the wide and varietal crosses of blackgram (Vigna mungo L. Hepper). Indian J Genet Plant Breed 49:131–134

    Google Scholar 

  • Reddy KR, Singh DP (1990) The variation and transgressive segregation in the wide and varietal crosses of mungbean. Madras Agricultural Journal 77:12–14

    Google Scholar 

  • Reddy MV, Singh KB (1993) Rate reducing resistance to Ascochyta blight in chickpeas. Plant Dis 77:231–233

    Article  Google Scholar 

  • Sahoo L, Sushma Sugla T, Singh ND, Jaiwal PK (2000) In vitro plant regeneration and recovery of cowpea (Vigna unguiculata) transformants via Agrobacterium-mediated transformation. Plant Cell Biotech Mol Biol 1:47–54

    Google Scholar 

  • Saini R, Jaiwal PK (2005) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium- mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. Biol Plant 51:69–74

    Article  CAS  Google Scholar 

  • Saini R, Sonia, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859

    CAS  PubMed  Google Scholar 

  • Sawa M (1973) On the interspecific hybridization between the Adzuki bean, Phaseolus angularis and the greengram. Phaseolus radiatus I. crossing between a cultivar of the greengram and a semi wild relative of Adzuki bean an endemic name Bokaso. Japenese J Breed 23:61–66

    Article  Google Scholar 

  • Shanmungam AS, Rathnaswamy R, Rangasamy SR (1983) Crossability studies between green gram and black gram. Curr Sci 52:1018–1020

    Google Scholar 

  • Sharma J, Satija CK (1996) In vitro hybridization in incompatible crosses of Vigna species. Crop Improv 23:29–32

    Google Scholar 

  • Shrivastava S, Chawala HS (1993) Effects of seasons and hormones on pre and post fertilization barriers of crossability and in vitro hybrid development between vigna unguiculata and V. mungo crosses. Biol Plantarum 35:505–512

    Article  CAS  Google Scholar 

  • Sidhu MC (2003) Cytogenetic and isozyme studies in interspecific hybrids of Vigna radiata and V. mungo with V. trilobata. Crop improv 30:140–145

    Google Scholar 

  • Singh DP (1990) Distant hybridization in genus Vigna: a review. Indian J Genet Plant Breed 50:268–276

    Google Scholar 

  • Singh BV, Ahuja MR (1977) Phaseolus sublobatus Roxb. A source of resistance to yellow mosaic virus for cultivated mung. Ind J Genet 37:130–132

    Google Scholar 

  • Singh BB, Dikshit HK (2002) Possibilities and limitations of interspecific hybridization involving green gram (Phaseolus radiatus) and black gram (Phaseolus mungo). Indian J Agric Sci 72:676–678

    Google Scholar 

  • Singh BB, Singh DP (1998) Variation for yield and yield components in the early segregating generations of a wide cross between mungbean and urdbean. Indian J Genet Plant Breed 58:113–115

    Google Scholar 

  • Singh HB, Joshi BS, Chandel KPS, Pant KC, Saxena RK (1974) Genetic diversity in some Asiatic Phaseolus species and its conservation. Indian J Genet 34:52–57

    Google Scholar 

  • Singh MN, Singh RM, Singh UP (1996) Studies on hybrids and transgressive segregates in wide crosses of mungbean and urdbean. Indian J Genet Plant Breed 59:109–113

    Google Scholar 

  • Singh KP, Monika Sareen PK, Kumar A (2003) Interspecific hybridization studies in Vigna radiata L. Wilczek and Vigna umbellata L. National J Pl Improv 5:16–18

    CAS  Google Scholar 

  • Singh A, Baoule AL, Ahmed HG, Aliyu U, Sokoto MB, Alhassan J, Musa M, Haliru B (2011) Influence of phosphorus on the performance of cowpea (Vigna unguiculata (L.) Walp.) varieties in the sudan savanna of Nigeria. Agric Sci 2:313–317

    Google Scholar 

  • Siriwardhane D, Egawa Y, Tomooka N (1991) Cross-compatibility of cultivated adzuki bean Vigna angularis. and rice bean (V. umbellata) with their wild relatives. Plant Breed 107:320–325

    Article  Google Scholar 

  • Sirkka ATI, Verugesse G, Pfeifer WH, Mujeeb-Kazi A (1993) Crossability of tetraploid and hexaploid wheats with ryes for primary triticale production. Euphytica 65:203–210

    Article  Google Scholar 

  • Smartt J (1981) Gene pools in Phaseolus and Vigna cultigens. Euphytica 30:445–459

    Article  Google Scholar 

  • Smartt J (1985) Evolution of grain legumes. III. Pulses in the genus Vigna. Exp Agr 21:87–100

    Article  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea Vigna unguiculata. seeds expressing a bean amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Somta P, Kaga A, Tomooka N, Kashiwaba K, Isemura T, Chaitieng B, Srinives P, Vaughan DA (2006) Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V. nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics. Plant Breed 125:77–84

    Article  CAS  Google Scholar 

  • Somta C, Somta P, Tomooka N, Ooi PAC, Vaughan DA, Srinives P (2008) Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). J Stored Prod Res 44:316–321

    Article  Google Scholar 

  • Sonia Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata L. Wilczek. using bar as selectable marker. Plant Cell Rep 26:187–198

    Article  CAS  Google Scholar 

  • Subramanian D (1980) Interspecific hybridization in Vigna. Indian J Genet Plant Breed 40:437–438

    Google Scholar 

  • Subramanian A, Muthiah AR (2001) Interspecific hybridization between Vigna radiata (L.) Wilczek and V.mungo (L.) Hepper. Legume Res 24:154–158

    Google Scholar 

  • Thiyagu K, Jayamani P, Nadarajan N (2008) Pollen pistil interaction in inter-specific crosses of Vigna species. Cytologia 73:251–257

    Article  Google Scholar 

  • Tomooka N, Lairungruang C, Nakeeraks P, Egawa Y, Thavarasook C (1992) Development of bruchid resistant mungbean using wild mungbean germplasm in Thailand. Plant Breed 109:60–66

    Article  Google Scholar 

  • Tomooka N, Kashiwaba K, Vaughan D, Ishimoto M, Egawa Y (2000) The effectiveness of evaluating wild species, searching for sources of resistance to bruchid beetle in the genus Vigna subspecies Caratotropis. Euphytica 115:27–41

    Article  Google Scholar 

  • Tomooka N, Vaughan DA, Xu RQ, Kashiwaba K, Kaga A (2001) Japanese native Vigna genetic resources. Jpn Agric Res Q 35:1–9

    Google Scholar 

  • Tomooka N, Egawa Y, Kashiwaba K, Kaga A, Isemura T, Vaughan DA (2003) Incorporation of bruchid resistance factors from rice bean (Vigna umbellata) to azuki bean (V. angularis). Jpn J Trop Agric 47:75–76 (in Japanese)

    Google Scholar 

  • Tomooka N, Kaga A, Vaughan DA (2006a) The Asian Vigna (Vigna subgenus Ceratotropis) biodiversity and evolution. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution. Part C phanerogams (angiosperms- dicotyledons), vol 1. Science Publishers, Enfield, New Jersey, pp 87–126

    Google Scholar 

  • Tullu A, Buchwaldt L, Lulsdorf M, Banniza S, Barlow B, Slinkard AE, Sarker A, Taran TD, Warkentin TD, Vandenberg A (2006) Sources of resistance to anthracnose (Colletotrichum truncatum) in wild Lens species. Genet Res Crop Evol 53:111–119

    Article  CAS  Google Scholar 

  • Tyagi DK, Chawla HS (1999) Effects of seasons and hormones on crossability barriers and in vitro hybrid development between Vigna radiata and V. unguiculata. Acta Agronomica Hungarica 47:147–154

    CAS  Google Scholar 

  • Vaughan DA, Tomooka N, Kaga A (2005) Azuki bean. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. Grain legumes, vol I. CRC Press, Boca Raton, Florida, pp 341–353

    Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Leningrad 1951

    Google Scholar 

  • Vavilov NI (1928) Geographical centers of our cultivated plants. In: Proceedings of Vth international genetic congress, New York, USA, p 342–369

    Google Scholar 

  • Vavilov NI (1949) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 131(6):26–151

    Google Scholar 

  • Verma MM, Brar JS (1996) Breeding approaches for increasing yield potential of mungbean. In: Asthana AN, Kim DH (eds) Recent advances in mungbean research. Indian Society of Pulses Research and Development, Kanpur, India, pp 102–123

    Google Scholar 

  • Verma RPS, Singh DP (1986) Problems and prospects of interspecific hybridization involving green gram and black gram. Indian J Agr Sci 56:535–537

    Google Scholar 

  • Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J (2012) Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169–179

    Article  PubMed  Google Scholar 

  • Yamada T, Teraishi M, Hattori K, Ishimoto M (2001) Transformation of azuki bean by Agrobacterim tumefaciens. Plant Cell Tiss Org Cult 64:47–54

    Article  CAS  Google Scholar 

  • Yamada T, Teraishi M, Hattori K, Ishimoto M (2005) Isolation of two α-amylase inhibitor genes of tepary bean Phaseolus acutifolius and their functional characterization in genetically engineered azuki bean. Plant Sci 169:502–511

    Article  CAS  Google Scholar 

  • Yamaguchi H (1992) Wild and weed azuki beans in Japan. Econ Bot 46:384–394

    Article  Google Scholar 

  • Zukovskij PM (1962) Cultivated plants and their wild relatives. Commonwealth Agriculture Bureau, London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Pratap Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pratap, A., Malviya, N., Tomar, R., Gupta, D.S., Kumar, J. (2014). Vigna. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9572-7_8

Download citation

Publish with us

Policies and ethics