Skip to main content

Barley

  • Chapter
  • First Online:
  • 1546 Accesses

Abstract

Barley (Hordeum vulgare L.) is a widely adapted cereal crop with an extremely wide geographic distribution throughout the world. It finds great use for animals as a feed and for humans as a grain, especially as the source for malt for the brewing industry. In recent times, there is considerable interest in the nutritional properties of barley due to the discovery of the cholesterol-lowering effect of β-glucan, a cell wall polysaccharide. Exploitation of genetic diversity in the primary and secondary gene pool of barley using DNA-based technologies has yielded interspecific crosses with improved grain properties, malting quality and resistance to biotic and abiotic stresses. The significant achievements regarding introgression of alien genes include the genes Rym14(Hb), Rym16(Hb) and Ryd4(Hb) which were introgressed from Hordeum bulbosum conferring resistance to BaMMV, BaYMV and BYDV in barley. Significant advances in genetic engineering of barley have been obtained, and strategies for establishment of regenerative cell and tissue culture systems as well as for development of DNA delivery techniques have been formulated. Lately, a huge potential has been realised in barley grains to produce pharmaceutical proteins like oral vaccines, growth supplements and food additives which are being exploited in a commercial scale. Nevertheless, several problems still remain like the strong genotype dependency of barley transformation protocols, transformation efficiency, transgene stability and public acceptance. The review focuses on all these issues and elaborates achievements made in the last two decades in genetic enhancement of barley using different alien gene transfer approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe T, Skadsen R, Patel M, Kaeppler H (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants. Plant Biotechnol J 4:35–44

    CAS  PubMed  Google Scholar 

  • Aguado-Santacruz GA, Velázquez-Ordinola Á, Moreno-Gómez B, Gómez-Torres LM, Díaz-Espino LF, Gámez Vázquez FP (2011) Development of long-term and reliable in vitro plant regeneration systems for elite malting barley varieties: optimizing media formulation and explant selection. Afr J Biotechnol 10:19522–19533

    CAS  Google Scholar 

  • Ahokas H (1989) Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor Appl Genet 77:469–472

    CAS  PubMed  Google Scholar 

  • Ayliffe MA, Steinau M, Park RF, Rooke L, Pacheco MG, Hulbert SH, Trick HN, Pryor AJ (2004) Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley. Mol Plant Microbe Interact 17:853–864

    CAS  PubMed  Google Scholar 

  • Babaeizad V, Imani J, Kogel KH, Eichmann R, Hückelhoven R (2009) Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor Appl Genet 118:455–463

    CAS  PubMed  Google Scholar 

  • Barrero C, Royo J, Grijota-Martinez C, Faye C, Paul W, Sanz S, Steinbiss HH, Hueros G (2009) The promoter of ZmMRP-1, a maize transfer cell-specific transcriptional activator, is induced at solute exchange surfaces and responds to transport demands. Planta 229:235–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    PubMed Central  PubMed  Google Scholar 

  • Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans Res Soc B 365:61–71

    Google Scholar 

  • Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbin HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–3495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bregitzer P, Dahleen LS, Campbell RD (1998a) Enhancement of plant regeneration from embryogenic callus of commercial barley cultivars. Plant Cell Rep 17:941–945

    CAS  Google Scholar 

  • Bregitzer P, Halbert SE, Lemaux PG (1998b) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425

    Google Scholar 

  • Bregitzer P, Campbell RD (2001) Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci 41:173–179

    CAS  Google Scholar 

  • Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley. Crop Sci 43:4–12

    CAS  Google Scholar 

  • Burton RA, Collins HM, Kibble NAJ, Smith JA, Shirley NJ, Jobling SA, Henderson M, Singh RR, Pettolino F, Wilson SM, Bird AR, Topping DL, Bacic A, Fincher GB (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall 1, 3;1,4.-β(beta)-D-glucans and alters their fine structure. Plant Biotechnol J 9:117–135

    CAS  PubMed  Google Scholar 

  • Carciofi M, Blennow A, Jensen SL, Shaik SS, Henriksen A, Buléon A, Holm PB, Hebelstrup KH (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12:223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chai Y, Nirmala J, Kleinhofs A, Steffenson B (2012) Failure of RPG1 protein to degrade in high-copy Rpg1 transgenic barley lines results in susceptibility to stem rust. Physiol Mol Plant Pathol 80:10–18

    CAS  Google Scholar 

  • Chauhan M, Kothari SL (2004) Optimization of nutrient levels in the medium increases the efficiency of callus induction and plant regeneration in recalcitrant indian barley Hordeum vulgare L. in vitro. In Vitro Cell Dev Biol Plant 40:520–527

    CAS  Google Scholar 

  • Cho MJ, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244

    CAS  Google Scholar 

  • Cho MJ, Wong JH, Marx C, Jiang W, Lemaux PG, Buchanan BB (1999a) Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grains. Proc Natl Acad Sci USA 96:14641–14646

    CAS  PubMed  Google Scholar 

  • Cho MJ, Choi HW, Buchanan BB, Lemaux PG (1999b) Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants. Theor Appl Genet 98:1253–1262

    CAS  Google Scholar 

  • Cho MJ, Choi HW, Jiang W, Ha CD, Lemaux PG (2002) Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants. Physiol Plant 115:144–154

    CAS  PubMed  Google Scholar 

  • Choi HW, Lemaux PG, Cho MJ (2003) Long-term stability of transgene expression driven by barley endosperm-specific hordein promoters in transgenic barley. Plant Cell Rep 21:1108–1120

    CAS  PubMed  Google Scholar 

  • Choi HW, Yu XH, Lemaux PG, Cho MJ (2009) Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants. Plant Cell Rep 28:1265–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coronado MJ, Hensel G, Broeders S, Otto I, Kumlehn J (2005) Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol Plant 27:591–599

    CAS  Google Scholar 

  • Dahleen LS, Manoharan M (2007) Recent advances in barley transformation. In Vitro Cell Dev Biol Plant 43:493–506

    Google Scholar 

  • Dahleen LS, Brueggeman R, Abebe T, Skadsen R (2011) Field tests of transgenic barley lines in North Dakota. In: Canty S, Clark A, Anderson-Scully A, Ellis D, Sanford D (eds) Proceedings of the 2011 national fusarium head blight forum. US Wheat Barley Scab Initiative: East Lansing MI/Lexington, KY, p 82

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplast technology: current status. Acta Physiol Plant 27:117–129

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    CAS  PubMed  Google Scholar 

  • Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.). expressing the wheat aluminium resistance gene (TaALMT1). shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7:391–400

    CAS  PubMed  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci 103:18450–18457

    CAS  PubMed  Google Scholar 

  • Devaux P, Kasha KJ (2009) Overview of barley doubled haploid production. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science and Business Media, New York, pp 47–63

    Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards MC, Fetch TG, Schwarz PB, Steffenson BJ (2001) Effect of barley yellow dwarf virus infection on yield and malting quality of barley. Plant Dis 85:202–207

    Google Scholar 

  • Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R (2010) BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol Plant Microbe Interact 23:1217–1227

    CAS  PubMed  Google Scholar 

  • El-Din E-AS, Abd-alla SM, El-Tarras AA, El-Awady MA (2011) Production of early flowering transgenic barley expressing the early flowering allele of the Cryptochrome2 gene. GM Crops 2:50–57

    Google Scholar 

  • Erlendsson LS, Muench MO, Hellman U, Hrafnkelsdóttir SM, Jonsson A, Balmer Y, Mäntylä E, Örvar BL (2010) Barley as a green factory for the production of functional Flt3 ligand. Biotechnol J 5:163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Nuutila AM (2009) Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I a-1 fragment in barley seeds. Plant Biotechnol J 7:657–672

    CAS  PubMed  Google Scholar 

  • FAO: The state of food and agriculture 2012. FAO Agricultural Series No. 36, ISSN 0081–4539

    Google Scholar 

  • FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567

  • Fedak G (1989) Wide hybridization for cereal improvement. In: Maluszynski M (ed) Current options fr cereal improvement. Kluwer Academic Publishers, Dordrecht, pp 39–48

    Google Scholar 

  • Federico ML, Kaeppler HF, Skadsen RW (2005) The complex developmental expression of a novel stress-responsive barley Ltp gene is determined by a shortened promoter sequence. Plant Mol Biol 57:35–51

    CAS  PubMed  Google Scholar 

  • Fetch T Jr, Johnston PA, Pickering R (2009) Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley H. vulgare. Phytopathology 99:339–343

    CAS  PubMed  Google Scholar 

  • Friedt W, Horsley RD, Harvey BL, Poulsen DME, Lance RCM, Ceccarelli S, Grando S, Capettini F (2011) Barley breeding: history, progress, objectives, and technology. In: Ullrich SE (ed) Barley: production, improvement, and uses. Blackwell Publishing Ltd, New York, pp 160–220

    Google Scholar 

  • Funatsuki H, Lazzeri PA, Lörz H (1992) Use of feeder cells to improve barley protoplast culture and plant regeneration. Plant Sci 85:251–254

    Google Scholar 

  • Funatsuki H, Müller E, Lazzeri PA, Lörz H (1994) Production of somatic hybrid calli between Hordeum vulgare L. and Hordeum bulbosum L. J Plant Physiol 144:251–254

    Google Scholar 

  • Funatsuki H, Kuroda H, Kihara M, Lazzeri PA, Müller E, Lörz H, Kishinami I (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor Appl Genet 91:707–712

    CAS  PubMed  Google Scholar 

  • Furtado A, Henry RJ (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol J 3:421–434

    CAS  PubMed  Google Scholar 

  • Furtado A, Henry RJ, Pellegrineschi A (2009) Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J 7:240–253

    CAS  PubMed  Google Scholar 

  • Ganeshan S, Båga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN (2003) Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare L.). Plant Cell Tissue Organ Cult 73:57–64

    CAS  Google Scholar 

  • Gatford KT, Basri Z, Edlington J, Lloyd J, Qureshi JA, Brettell R, Fincher GB (2006) Gene flow from transgenic wheat and barley under field conditions. Euphytica 151:383–391

    Google Scholar 

  • GMO Compass (2013) http://www.gmo-compass.org/eng/database/plants/36.barley.html Accessed Feb 2013

  • GMO Registe deliberate release and placing on the EU market of GMOs (2013) http://gmoinfo.jrc.ec.europa.eu/gmp_browse.aspx. Accessed Feb 2013

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838

    CAS  PubMed  Google Scholar 

  • Gubisová M, Mihálik D, Gubis J (2012) Optimization of barley mature embryo regeneration and comparison with immature embryos of local cultivars. Nova Biotechnol Chim 11:57–62

    Google Scholar 

  • Gubler F, Hughes T, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 147:886–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagio T, Hirabayashi T, Machii H, Tomotsune H (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker. Plant Cell Rep 14:329–334

    CAS  PubMed  Google Scholar 

  • Halámková E, Vagera J, Ohnoutková L (2004) Regeneration capacity of calli derived from immature embryos in spring barley cultivars. Biol Plant 48:313–316

    Google Scholar 

  • Hansen M, Lange M, Friis C, Dionisio G, Holm PB, Vincze E (2007) Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition. J Exp Bot 58:3987–3995

    CAS  PubMed  Google Scholar 

  • Harwood WA, Harden J, Ross SM, Fish L, Smith J, Snape JW (1999) The performance of transgenic barley lines in a UK field trial. Barley Gent Newsl 29:13–18

    Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    CAS  PubMed  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kuhmlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant–microbe interactions. J Plant Physiol 165:71–82

    CAS  PubMed  Google Scholar 

  • Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J (2011) Transgene expression systems in the Triticeae cereals. J Plant Physiol 168:30–44

    CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice Oryza sativa L. mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G, Riechen R, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1995) Regeneration of the barley zygote in ovule culture. Sex Plant Reprod 8:49–59

    Google Scholar 

  • Holm PB, Olsen O, Schnorf M, Brinch-Pedersen H, Knudsen S (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgen Res 9:21–32

    CAS  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2006) Transformation of barley Hordeum vulgare L. by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335

    CAS  PubMed  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2008) Transformation of different barley (Hordeum vulgare L.). cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27:1833–1840

    CAS  PubMed  Google Scholar 

  • Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10:237–247

    CAS  PubMed  Google Scholar 

  • Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97:1914–1919

    CAS  PubMed  Google Scholar 

  • Horvath H, Jensen LG, Wong OT, Kohl E, Ullrich SE, Cochran J, Kannangara CG, von Wettstein D (2001) Stability of transgene expression, field performance and recombination breeding of transformed barley lines. Theor Appl Genet 102:1–11

    CAS  Google Scholar 

  • Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369

    CAS  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.). mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    CAS  PubMed  Google Scholar 

  • Jacobs A, Lunde C, Bacic A, Tester M, Roessner U (2007) The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics 3:307–317

    CAS  Google Scholar 

  • Jähne A, Lazzeri PA, Lörz H (1991) Regeneration of fertile plants from protoplasts derived from embryogenic cell suspensions of barley (Hordeum vulgare L.). Plant Cell Rep 10:1–6

    PubMed  Google Scholar 

  • Jähne A, Becker D, Brettschneider D, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    PubMed  Google Scholar 

  • Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KC, von Wettstein D (1996) Transgenic barley expressing a protein-engineered, thermostable 1,3-1,4.-βbeta.-glucanase during germination. Proc Natl Acad Sci USA 93:3487–3491

    CAS  PubMed  Google Scholar 

  • Jensen LG, Politz O, Olsen O, Thomsen KC, von Wettstein D (1998) Inheritance of a codon-optimized transgene expressing heat stable 1,3-1,4.-P-glucanase in scutellum and aleurone of germinating barley. Hereditas 129:215–225

    CAS  Google Scholar 

  • Jha AK, Dahleen LS, Suttle JC (2007) Ethylene influences green plant regeneration from barley callus. Plant Cell Rep 26:285–290

    CAS  PubMed  Google Scholar 

  • Joensuu JJ, Kotiaho M, Teeri TH, Valmu L, Nuutila AM, Oksman-Caldentey KM, Niklander-Teeri V (2006) Glycosylated F4 K88. fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgen Res 15:359–373

    CAS  Google Scholar 

  • Johnston PA, Timmerman-Vaughan GM, Farnden KJF, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    PubMed  Google Scholar 

  • Kamenarova K, Gecheff K, Stoyanova M, Muhovski Y, Anzai H, Atanassov A (2007) Production of recombinant human lactoferrin in transgenic barley. Biotechnol Biotechnol Eq. 21:18–27

    Google Scholar 

  • Kapusi E, Hensel G, Coronado MJ, Broeders S, Marthe C, Otto I, Kumlehn J (2013) The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants. Plant Mol Biol 81:149–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kartha KK, Chibbar RN, Georges F, Leung N, Caswell K, Kendall E, Qurashi J (1989) Transient expression of chloramphenicol acetyltransferase CAT. Gene in barley cell cultures and immature embryos through microprojectile bombardment. Plant Cell Rep 8:429–432

    CAS  PubMed  Google Scholar 

  • Kihara M, Saeki K, Ito K (1998) Rapid production of fertile transgenic barley (Hordeum vulgare L.). by direct gene transfer to primary callus-derived protoplasts. Plant Cell Rep 17:937–940

    CAS  Google Scholar 

  • Kihara M, Okada Y, Kuroda H, Saeki K, Yoshigi N, Ito K (2000) Improvement of beta-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol Breed 6:511–517

    CAS  Google Scholar 

  • Kim YB, Garbisu C, Pickering IJ, Prince RC, George GN, Cho MJ, Wong JH, Buchanan BB (2003) Thioredoxin h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta 218:186–191

    CAS  PubMed  Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1997) Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.). and carrot (Daucus carota L.). Theor Appl Genet 94:221–226

    Google Scholar 

  • Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oryza sativa L.). and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Rep 17:362–367

    CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu T, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    CAS  Google Scholar 

  • Kogel KH, Voll LM, Schäfer P, Jansen C, Wu Y, Langen G, Imani J, Hofmann J, Schmiedl A, Sonnewald S, von Wettstein D, Cook RJ, Sonnewald U (2010) Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Natl Acad Sci USA 107:6198–6203

    CAS  PubMed  Google Scholar 

  • Koprek T, Hänsch R, Nerlich A, Mendel RR, Schulze J (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci 119:79–91

    CAS  Google Scholar 

  • Kosová K, Chrpová J, Šíp V (2008) Recent advances in breeding of cereals for resistance to barley yellow dwarf virus – a review. Czech J Genet Plant Breed 44:1–10

    Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Lörz H (2006) Genetic transformation of barley (Hordeum vulgare L.). via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    CAS  PubMed  Google Scholar 

  • Kuntz M (2012) Destruction of public and governmental experiments of GMO in Europe. GM Crops Food 3:258–264

    PubMed  Google Scholar 

  • Lange M, Vincze E, Möller MG, Holm PB (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep 25:815–820

    CAS  PubMed  Google Scholar 

  • Lange M, Vincze E, Wieser H, Schjoerring JK, Holm PB (2007) Suppression of C-hordein synthesis in barley by antisense constructs results in a more balanced amino acid composition. J Agric Food Chem 55:6074–6081

    CAS  PubMed  Google Scholar 

  • Lazzeri PA, Brettschneider R, Lührs R, Lörz H (1991) Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor Appl Genet 81:437–444

    CAS  PubMed  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012

    CAS  Google Scholar 

  • Li M, Singh R, Bazanova N, Milligan AS, Shirley N, Langridge P, Lopato S (2008) Spatial and temporal expression of endosperm transfer cell-specific promoters in transgenic rice and barley. Plant Biotechnol J 6:465–476

    CAS  PubMed  Google Scholar 

  • Li QY, Niu HB, Yin J, Shao HB, Niu JS, Ren JP, Li YC, Wang X (2010) Transgenic barley with overexpressed PTrx increases aluminum resistance in roots during germination. J Zhejiang Univ Sci B Biomed Biotechnol 11:862–870

    CAS  Google Scholar 

  • Liu J, Xu X, Deng X (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult 82:19–44

    CAS  Google Scholar 

  • Lloyd AH, Milligan AS, Langridge P, Able JA (2007) TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L). BMC Plant Biol 7:67

    PubMed Central  PubMed  Google Scholar 

  • Lührs R, Lörz H (1987) Plant regeneration in vitro from embryogenic cultures of spring- and winter-type barley (Hordeum vulgare L.). varieties. Theor Appl Genet 75:16–25

    Google Scholar 

  • Manoharan M, Dahleen LS (2002) Genetic transformation of the commercial barley (Hordeum vulgare L.). cultivar Conlon by particle bombardment of callus. Plant Cell Rep 21:76–80

    CAS  Google Scholar 

  • Manoharan M, Dahleen LS, Hohn TM, Neate SM, Yu XH, Alexander NJ, McCormick SP, Bregitzer P, Schwarz PB, Horsley RD (2006) Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol. Plant Sci 171:699–706

    CAS  Google Scholar 

  • March TJ, Richter D, Colby T, Harzen A, Schmidt J, Pillen K (2012) Identification of proteins associated with malting quality in a subset of wild barley introgression lines. Proteomics 12:2843–2851

    CAS  PubMed  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    CAS  Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agricult Food Secur 1:7

    Google Scholar 

  • McGrath PF, Vincent JR, Lei CH, Pawlowski WP, Torbert KA, Gu W, Kaeppler HF, Wan Y, Lemaux PG, Rines HR, Somers DA, Larkins BA, Lister RM (1997) Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur J Plant Pathol 103:695–710

    CAS  Google Scholar 

  • McIntosh RA (1998) Breeding for resistance to biotic stresses. Euphytica 100:19–34

    Google Scholar 

  • Melonek J, Maria Mulisch M, Schmitz-Linneweber C, Grabowski E, Hensel G, Krupinska K (2010) Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta 232:471–481

    CAS  PubMed  Google Scholar 

  • Mendel RR, Müller B, Schulze J, Kolesnikov V, Zelenin A (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor Appl Genet 78:31–34

    CAS  PubMed  Google Scholar 

  • Mendel RR, Clauss E, Hellmund R, Schulze J, Steinbiss HH, Tewes A (1990) Gene transfer to barley. In: Nijkamp HJJ, van der Plaas LHW, van Aartrijk J (eds) Progress in plant cellular and molecular biology: proceedings of the viith international congress on plant tissue and cell culture, Amsterdam, pp 73–78

    Google Scholar 

  • Meng L, Bregitzer P, Zhang S, Lemaux PG (2003) Methylation of the exon/intron region in the Ubi1 promoter complex correlates with transgene silencing in barley. Plant Mol Biol 53:327–340

    CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    CAS  PubMed  Google Scholar 

  • Murray F, Kalla R, Jacobsen J, Gubler F (2003) A role for HvGAMYB in anther development. Plant J 33:481–491

    CAS  PubMed  Google Scholar 

  • Murray F, Brettell R, Matthews P, Bishop D, Jacobsen J (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep 22:397–402

    Google Scholar 

  • Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Australasian Plant Pathol 39:85–96

    Google Scholar 

  • Nagy B, Majer P, Mihály R, Dudits D, Horváth VH (2011) Transient and transgenic approaches for functional testing of candidate genes in barley. Acta Biol Szeged 55:129–133

    Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    CAS  PubMed  Google Scholar 

  • Newton AC, Kar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, de Carvalho MAPA, Rubiales D, Russell J, Dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269

    Google Scholar 

  • Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J, Steffenson BJ, Swanston JS, Thomas WTB, Waugh R, White PJ, Bingham IJ (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3:141–178

    Google Scholar 

  • Nganje WE, Johnson DD, Wilson WW, Leistritz FL, Bangsund DA, Tiapo NM (2001) Economic impacts of fusarium head blight in wheat and barley: 1998–2000. Ag Business Applied Econ. Rep. 464. North Dakota State University, Fargo, ND

    Google Scholar 

  • Nuutila AM, Ritala A, Skadsen RW, Mannonen L, Kauppinen V (1999) Expression of fungal thermotolerant endo-1,4-beta-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41:777–783

    CAS  PubMed  Google Scholar 

  • Nuutila AM, Hämäläinen J, Mannonen L (2000) Optimization of media nitrogen and copper concentration for regeneration of green plants from polyembryogenic cultures of barley (Hordeum vulgare L.). Plant Sci 151:85–92

    CAS  Google Scholar 

  • Nuutila AM, Ritala A, Salmenkallio-Marttila M, Aspegren K, Aikasalo R, Kurtèn U, Tammisola J, Teeri TH, Mannonen L, Kauppinen V (2002) Improvement of malting quality of barley by complementing the malt enzyme spectrum. Phytochem Rev 1:135–140

    CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • OGTR: Genetically modified organisms – field trial site. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/map

  • Ohnoutkova L, Zitka O, Mrizova K, Vaskova J, Galuszka P, Cernei N, Smedley MA, Harwood WA, Adam V, Kizek R (2012) Electrophoretic and chromatographic evaluation of transgenic barley expressing a bacterial dihydrodipicolinate synthase. Electrophoresis 33:2365–2373

    CAS  PubMed  Google Scholar 

  • Okada Y, Kihara M, Kuroda H, Yoshigi N, Ito K (2000) Cloning and sequencing of the promoter region of the seed specific β-amylase gene from barley. J Plant Physiol 156:762–767

    CAS  Google Scholar 

  • Ordon F, Ahlemeyer J, Werner K, Köhler W, Friedt W (2005) Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica 146:21–28

    CAS  Google Scholar 

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123

    CAS  Google Scholar 

  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases-opinions and trends. Eur J Plant Pathol 133:295–313

    Google Scholar 

  • Phillips RL (2010) Mobilizing science to break yield barriers. Crop Sci 50:99–108

    Google Scholar 

  • Pickering RA, Hill AM, Michel M, Timmerman-Vaughan GM (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 2I. Theor Appl Genet 91:1288–1292

    CAS  PubMed  Google Scholar 

  • Pickering RA, Steffenson BJ, Hill AM, Borokova I (1998) Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × Hordeum bulbosum hybrid. Plant Breed 117:83–84

    Google Scholar 

  • Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genome Res 109:344–349

    CAS  PubMed  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technology 8:535–542

    CAS  Google Scholar 

  • Prada D (2009) Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack? J Exp Bot 60:2541–2552

    CAS  PubMed  Google Scholar 

  • Proels RP, Oberhollenzer K, Pathuri IP, Hensel G, Kumlehn J, Hückelhoven R (2010) RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 23:1143–1150

    CAS  PubMed  Google Scholar 

  • Przetakiewicz A, Orczyk W, Nadolska-Orczyk A (2003) The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Organ Cult 73:245–256

    CAS  Google Scholar 

  • Radchuk V, Borisjuk L, Radchuk R, Steinbiss HH, Rolletschek H, Broeders S, Wobus U (2006) Jekyll encodes a novel protein involved in the sexual reproduction of barley. Plant Cell 18:1652–1666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148

    CAS  Google Scholar 

  • Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B, von Wettstein D, Kogel KH, Vilcinskas A (2009) Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot 60:4105–4114

    CAS  PubMed  Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54:373–385

    CAS  PubMed  Google Scholar 

  • Ramessar K, Capell T, Christou P (2008) Molecular pharming in cereal crops. Phytochem Rev 7:579–592

    CAS  Google Scholar 

  • Regina A, Kosar-Hashemi B, Ling S, Li Z, Sadequr Rahman S, Morell M (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61:1469–1482

    CAS  PubMed  Google Scholar 

  • Ritala A, Aspegren K, Kurtén U, Salmenkallio-Marttila M, Mannonen L, Hannus R, Kauppinen V, Teeri TH, Enari TM (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol Biol 24:317–325

    CAS  PubMed  Google Scholar 

  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42:278–285

    CAS  PubMed  Google Scholar 

  • Ritala A, Marttila S, Wilhelmson A, Nuutila AM (2005) Inducing homozygosity in transgenic barley (Hordeum vulgare L.) by microspore culture. Acta Physiol Plant 27:601–609

    CAS  Google Scholar 

  • Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2003) Mapping of Rym14 Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107:965–971

    CAS  PubMed  Google Scholar 

  • Ruge-Wehling B, Linz A, Habekuß A, Wehling P (2006) Mapping of Rym16 Hb, the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113:867–873

    CAS  PubMed  Google Scholar 

  • Saisho D, Takeda K (2011) Barley: emergence as a new research material of crop science. Plant Cell Physiol 52:724–727

    CAS  PubMed  Google Scholar 

  • Salmenkallio-Marttila M, Aspegren K, Akerman S, Kurtén U, Mannonen L, Ritala A, Teeri TH, Kauppinen V (1995) Transgenic barley (Hordeum vulgare L.) by electroporation of protoplasts. Plant Cell Rep 15:301–304

    CAS  PubMed  Google Scholar 

  • Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW (2004) The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167:1371–1379

    CAS  PubMed  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    PubMed  Google Scholar 

  • Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 50:19703–19708

    Google Scholar 

  • Scholz M, Ruge-Wehling B, Habekuß A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4 Hb: A novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor Appl Genet 119:837–849

    CAS  PubMed  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langridge P, Matsumoto M, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium – at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schultheiss H, Hensel G, Imani J, Broeders S, Sonnewald U, Kogel KH, Kumlehn J, Hückelhoven R (2005) Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol 139:353–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze J (2007) Improvements in cereal tissue culture by thidiazuron: a review. Fruit Veg Cereal Sci Biotechnol 1:64–79

    Google Scholar 

  • Schünmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliREDTM HIV diagnostic reagent in barley, potato and tobacco. Mol Breed 9:113–121

    Google Scholar 

  • Sharma VK, Hänsch R, Mendel RR, Schulze J (2004) A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) using meristematic shoot segments excised from germinated mature embryos. Plant Cell Rep 23:9–16

    CAS  PubMed  Google Scholar 

  • Sharma VK, Monostori T, Göbel C, Hänsch R, Bittner F, Wasternack C, Feussner I, Mendel RR, Hause B, Schulze J (2006) Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature. Phytochemistry 67:264–276

    CAS  PubMed  Google Scholar 

  • Shim YS, Pauls KP, Kasha KJ (2009) Transformation of isolated barley (Hordeum vulgare L.) microspores: timing of pretreatment and temperatures relative to results of bombardment. Genome 52:175–190

    CAS  PubMed  Google Scholar 

  • Shrawat AK, Becker D, Lörz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290

    CAS  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Soltész A, Vágújfalvi A, Rizza F, Kerepesi I, Galiba G, Cattivelli L, Coraggio I, Crosatti C (2012) The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J Appl Genetics 53:133–143

    Google Scholar 

  • Sreenivasulu N, Graner A, Wobus U (2008) Barley genomics: an overview. Int J Plant Genomics 2008:13

    Google Scholar 

  • Stahl R, Horvath H, van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99:2146–2151

    CAS  PubMed  Google Scholar 

  • Stahl Y, Coates S, Bryce JH, Morris PC (2004) Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure. Plant J 39:599–611

    CAS  PubMed  Google Scholar 

  • Stahl R, Lührs R, Dargatz H (2009) Thaumatin from transgenic barley. US2009/0031458, US patent application

    Google Scholar 

  • Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B, Denyer K, Field RA, Smith AM (2011) The role of alpha-glucosidase in germinating barley grains. Plant Physiol 155:932–943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steffenson BJ, Olivera P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agricult Res 58:532–544

    Google Scholar 

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    CAS  PubMed  Google Scholar 

  • Tanasienko IV, Yemets AI, Pirko YV, Korhkovyy VI, Abumhadi N, Blume YB (2011) Generation of transgenic barley lines producing human lactoferrin using mutant alpha-tubulin gene as the selective marker. Tsitol Genet 45:3–10

    CAS  PubMed  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    CAS  Google Scholar 

  • Tobias DJ, Manoharan M, Pritsch C, Dahleen LS (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley Hordeum vulgare cv. Conlon. Plant Cell Rep 26:631–639

    CAS  PubMed  Google Scholar 

  • Töpfer R, Gronenborn B, Schell J, Steinbiss HH (1989) Uptake and transient expression of chimeric genes in seed-derived embryos. Plant Cell 1:133–139

    PubMed Central  PubMed  Google Scholar 

  • Toubia-Rahme H, Johnston PA, Pickering RA, Steffenson BJ (2003) Inheritance and chromosomal location of Septoria passerinii resistance introgressed from Hordeum bulbosum into Hordeum vulgare. Plant Breed 122:405–409

    Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    CAS  PubMed  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES (2007) Short Vegetative Phase-like MADS-Box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235

    Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880

    CAS  Google Scholar 

  • Tull D, Phillipson BA, Kramhoft B, Knudsen S, Olsen O, Svensson B (2003) Enhanced amylolytic activity in germinating barley through synthesis of a bacterial alpha-amylase. J Cereal Sci 37:71–80

    CAS  Google Scholar 

  • Tyagi N, Dahleen LS (2011) Short term ethylene manipulation influences regeneration in barley. J Plant Mol Biol Biotechnol 2:65–73

    Google Scholar 

  • Tyagi N, Dahleen LS, Bregitzer P (2010) Candidate genes within tissue culture regeneration QTL revisited with a linkage map based on transcript-derived markers. Crop Sci 50:1697–1707

    CAS  Google Scholar 

  • Tyankova ND, Zagorska NA (2001) Genetic control of in vitro response in wheat (Triticum aestivum L.). In Vitro Cell Dev Biol Plant 3:524–530

    Google Scholar 

  • Um MO, Park TI, Kim YJ, Seo HY, Kim JG, Kwon SY, Kwak SS, Yun DJ, Yun SJ (2007) Particle bombardment-mediated transformation of barley with an Arabidopsis NDPK2 cDNA. Plant Biotechnol Rep 1:71–77

    Google Scholar 

  • Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    CAS  PubMed  Google Scholar 

  • Vickers CE, Xue G, Gresshoff PM (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol 62:195–214

    CAS  PubMed  Google Scholar 

  • von Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The genus Hordeum and the gene pools of barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley: developments in plant genetics and breeding, vol 7. Elsevier, Amsterdam, pp 9–12

    Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347–356

    CAS  PubMed  Google Scholar 

  • Wang MB, Abbott DC, Upadhyaya NM, Jacobsen JV, Waterhouse PM (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust J Plant Physiol 28:149–156

    Google Scholar 

  • Wegner L, Zwart G (2011) Who will feed the world? The production challenge. Oxfam research report. www.oxfam.org

  • Wilhelmson A, Kallio PT, Oksman-Caldentey KM, Nuutila AM (2007) Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare.). Plant Cell Rep 26:1773–1783

    CAS  PubMed  Google Scholar 

  • Wu YC, von Wettstein D, Kannangara CG, Nirmala J, Cook RJ (2006) Growth inhibition of the cereal root pathogens Rhizoctonia solani AG8. R. oryzae and Gaeumannomyces graminis var. tritici by a recombinant endochitinase from Trichoderma harzianum. Biocontrol Sci Technol 16:631–646

    Google Scholar 

  • Xue GP, Johnson JS, Smyth DJ, Vickers CE (2003) Selectable marker-free transgenic barley producing a high level of cellulase (1,4-beta-glucanase) in developing grains. Plant Cell Rep 21:1088–1094

    CAS  PubMed  Google Scholar 

  • Yadav T, Kachhwaha S, Kothari SL (2013) Efficient in vitro plant regeneration and generation of transgenic plants in barley (Hordeum vulgare L.) using particle bombardment. J Plant Biochem Biotechnol 22:202–213

    CAS  Google Scholar 

  • Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851

    CAS  PubMed  Google Scholar 

  • Zalewski W, Orczyk W, Gasparis S, Nadolska-Orczyk A (2012) Hvckx2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biol 12:206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinating seedlings. Plant Cell Rep 18:959–966

    CAS  Google Scholar 

  • Zhang Y, Shewry PR, Jones H, Barcelo P, Lazzeri PA, Halford NG (2001) Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J 28:431–441

    CAS  PubMed  Google Scholar 

  • Zhang Y, Darlington H, Jones HD, Halford NG, Napier JA, Davey MR, Lazzeri PA, Shewry PR (2003) Expression of the gamma-zein protein of maize in seeds of transgenic barley: effects on grain composition and properties. Theor Appl Genet 106:1139–1146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Anne C. Reichelt and Annemarie Henke for their assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schulze, J. (2014). Barley. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9572-7_5

Download citation

Publish with us

Policies and ethics