Skip to main content

Abstract

Ensuring food security in the era of climate change is of major concern to the plant breeders worldwide. Wheat, being the staple food crop of the world, needs more focus by the scientific community for its genetic upgradation and development of cultivars tolerant to prevalent biotic and abiotic stresses. The role of alien gene introgression in utilization of wild genetic resources to enhance the genetic diversity in the cultivated wheat varieties is widely acknowledged. Classical approaches of alien gene transfer like wide hybridization have been practiced to a great extent but are hindered by a number of factors like linkage drag and poor crossability among the species. When such approaches are coupled with novel biotechnological tools, they allow swift, precise and targeted gene transfer. Transgenic approach offers a great advantage in alien gene transfer by keeping aside the problems encountered in previous approaches and opens new avenues for alien gene transfer in wheat, hence ensuring broadening and diversification of wheat genome. This chapter focuses on the successful attempts of alien gene introgression into wheat through various approaches along with their limitations and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Arron C, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S (2002) Ph-I-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    CAS  Google Scholar 

  • Alam MA, Mandal MSN, Wang C, Ji W (2013) Chromosomal location and SSR markers of a powdery mildew resistance gene in common wheat line N0308. Afr J Microbiol Res 7:477–482

    CAS  Google Scholar 

  • Ayala-Navarrete L, Tourton E, Mechanicos AA, Larkin PJ (2009) Comparison of Thinopyrum intermedium derivatives carrying barley yellow dwarf virus resistance in wheat. Genome 52:537–546

    CAS  PubMed  Google Scholar 

  • Banks PM, Larkin PJ, Bariana HS, Lagudah ES, Appels R, Waterhouse PM, Brettell RIS, Chen X, Xu HJ, Xin ZY, Qian YT, Zhou XM, Cheng ZM, Zhou GH (1995) The use of cell cultures for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38:395–405

    CAS  PubMed  Google Scholar 

  • Bao Y, Wang J, He F, Ma H, Wang H (2012) Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust. Genet Mol Res 11:3198–3206

    CAS  PubMed  Google Scholar 

  • Bhalla PL, Ottenhof HH, Singh MB (2006) Wheat transformation—an update of recent progress. Euphytica 149:353–366

    Google Scholar 

  • Bieri S, Potrykus I, Fütterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763

    CAS  Google Scholar 

  • Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 116:417–425

    Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I, Fütterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086

    CAS  Google Scholar 

  • Brinch-Pedersen H, Oleson A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat Triticum aestivum L. for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    CAS  Google Scholar 

  • Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789

    CAS  PubMed  Google Scholar 

  • Ceoloni C, Donini P (1993) Combining mutations for two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome 36:377–386

    CAS  PubMed  Google Scholar 

  • Ceoloni C, Signore GD, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistance transfers. Hereditas 116:239–245

    Google Scholar 

  • Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome BAC libraries with larger and more uniform insert size. J Plant Biotechnol 2:181–188

    CAS  Google Scholar 

  • Chaudhary HK (2004) Molecular cytogenetic analysis of rye introgressed triticale × wheat derivatives. Report submitted to Commonwealth Scholarships Commission, London, UK, p 6

    Google Scholar 

  • Chaudhary HK (2008a) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches in bread wheat. In: Taniguchi K, Zhang X (eds) Focus on north-west Himalayan regions, vol 3, Adv Chromosome Sci., pp 67–69

    Google Scholar 

  • Chaudhary HK (2008b) Dynamics of wheat × Imperata cylindrica- a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R et al (eds) Proceedings of the 11th international wheat genetics symposium. University of Sydney Press, Sydney. p 647–650

    Google Scholar 

  • Chaudhary HK (2010) Chromosome elimination process-a boon or bane for alien introgression in wheat. Proceedings of the 4th Asian Chromosome Colloquium, Beijing, China, 11-14 October 2010, p 110–111

    Google Scholar 

  • Chaudhary HK (2011) DH breeding and chromosome engineering- innovations and implications in crop improvement. Proceedings of the National seminar on contemporary approaches to crop improvement, UAS, Bangalore, 22–23 April 2011, p 34–35

    Google Scholar 

  • Chaudhary HK (2013a) Dynamics of wheat chromosome engineering – innovations and implications in crop improvement. Proceedings of the centenary session of Indian Science Congress, Kolkata, 3–7 January 2013, p 24

    Google Scholar 

  • Chaudhary HK (2013b) New frontiers in chromosome elimination- mediated doubled haploidy breeding for accelerated and high precision genetic upgradation in wheat. In: Proceedings of the international conference on plant and animal genome XXI, San Diego, USA, 12–16 January 2013, p 211

    Google Scholar 

  • Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter × spring wheat hybrids. J Genet Breed 56:259–266

    Google Scholar 

  • Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98

    Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013a) Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica-mediated chromosome elimination approach. Plant Breed. doi:10.1111/pbr.12036

    Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013b) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system Nucleus (in press) DOI: 10.1007/s13237-013-0077-5

  • Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. J Plant Biotechnol 9:408–417

    CAS  Google Scholar 

  • Chen HB, Martin JM, Lavin M, Talbert LE (1994) Genetic diversity in hard red spring wheat based on sequence-tagged site PCR markers. Crop Sci 34:1628–1632

    CAS  Google Scholar 

  • Chen H, Bai YH, Wang QJ, Chen F, Li HW, Tullberg JN, Murray JR, Gao HW, Gong YS (2008) Traffic and tillage effects on wheat production on the Loess Plateau of China: 1. Crop yield and SOM. Aust J Soil Res 46:645–651

    Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat Triticum aestivum L. Genet Res Crop Evol 55:849–859

    Google Scholar 

  • Chhuneja P, Kumar K, Stirnweis D, Hurni S, Keller B, Dhaliwal HS, Singh K (2012) Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theor Appl Genet 124:1051–1058

    CAS  PubMed  Google Scholar 

  • Claesson L, Kotimaki M, Von Bothmer R (1990) Crossability and chromosome pairing in some interspecific Triticum hybrids. Hereditas 112:49–55

    Google Scholar 

  • Clausen M, Krauter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biotechnol 18:446–449

    CAS  PubMed  Google Scholar 

  • Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2011) Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet 122:479–487

    CAS  PubMed  Google Scholar 

  • Das BK, Saini A, Bhagwat SG, Jawali N (2006) Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breed 125:544–549

    CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    CAS  PubMed  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    CAS  PubMed  Google Scholar 

  • Eigsti OJ, Dustin P (1955) Colchicine in agriculture, medicine, biology and chemistry. Iowa State College Press, Ames, IA, pp 274–291

    Google Scholar 

  • Fahim M, Ayala-Navarrete L, Millar AM, Larkin PJ (2010) Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. J Plant Biotechnol 8:821–834

    CAS  Google Scholar 

  • FAO (2012) FAOSTAT agricultural database, Food and Agriculture Organisation of the United Nations FAO. http://www.fao.org/2012

  • Feldman M, Levy AA (2005) Allopolyploidy: a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    CAS  PubMed  Google Scholar 

  • Fettig S, Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res 8:179–189

    CAS  Google Scholar 

  • Foster E, Hawkins A, Adamson A (2010) Young person’s food atlas: pre-school. Food Standards Agency, London

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F (2012) Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition substitution and translocation lines with a novel source of resistance to wheat Fusarium Head blight. J Genet Genomics 39:103–110

    CAS  PubMed  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383

    Google Scholar 

  • Gao S, Xu H, Cheng X, Chen M, Xu Z, Li L, Ye X, Du L, Hao X, Ma Y (2005) Improvement of wheat drought and salt tolerance by expression of stress-inducible transcription factor GmDREB of soybean Glycine max. Chin Sci Bull 50:2714–2723

    CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    CAS  PubMed  Google Scholar 

  • Ghazvini H, Colin WH, Thomas JB, Fetch T (2013) Development of a multiple bulked segregant analysis (MBSA) method used to locate a new stem rust resistance gene Sr54 in the winter wheat cultivar Norin 40. Theor Appl Genet 126:443–449

    PubMed  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci USA 108:7657–7658

    Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:1–36

    Google Scholar 

  • Gustafson O, Krusa M, Zencak Z, Sheesley RJ, Granat L, Engstrom E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over south Asia: biomass or fossil fuel combustion? Science 323:495–498

    Google Scholar 

  • Han J, Lakshaman DK, Galvez LC, Mitra S, Baenziger PS, Mitra A (2012) Transgenic expression of lactoferrin impacts enhanced resistance to head blight of wheat by Fusarium graminearum. BMC Plant Biol 12:33–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    CAS  PubMed  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv. Stewart) with improved efficiency. J Exp Bot 61:1567–1581

    Google Scholar 

  • He C, Zhang W, Gao Q, Yang A, Hu X, Zhang J (2011) Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in the wheat seedlings. Euphytica 177:151–167

    CAS  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, Mccallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    CAS  PubMed  Google Scholar 

  • Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo’. Plant Breed 116:119–122

    Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat Triticum aestivum L. em Thell. 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370

    Google Scholar 

  • Hu TZ, Li HJ, Xie CJ, You MS, Yang Z, Sun QX, Liu ZY (2008) Molecular mapping and chromosomal location of powdery mildew resistance gene in wheat cultivar tangmai 4. Acta Agron Sin 34:1193–1198

    CAS  Google Scholar 

  • Huang T, Qu B, Li HP, Zuo DY, Zhao ZX, Liao YC (2012) A maize viviparous 1 gene increase seed dormancy and sprouting tolerate in transgenic wheat. J Cereal Sci 55:166–173

    Google Scholar 

  • Jarve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii: derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    CAS  PubMed  Google Scholar 

  • Jauhar PP, Peterson TS, Xu SS (2009) Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52:467–483

    CAS  PubMed  Google Scholar 

  • Jaberson MS, Chaudhary HK, Kishore N (2012) Molecular cytogenetic studies for detection and characterization of alien chromosome/chromatin introgressions in triticale x wheat derived wheat stable lines. Proceedings of the National symposium in plant cytogenetics: new approaches, Punjabi University, Patiala, p 99

    Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer Triticum dicoccoides accession 1W72 from Israel. Euphytica 159:385–390

    CAS  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    CAS  PubMed  Google Scholar 

  • Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE (2011) Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 147:1551–1563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim NS, Armstrong K, Knott DR (1993) Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in physical mapping of chromosome 7D. Theor Appl Genet 85:561–567

    Google Scholar 

  • Kim JC, Mullan BP, Simmins PH, Pluske JR (2003) Variation in the chemical composition of wheats grown in Western Australia as influenced by variety, growing region, season and post-harvest storage. Aust J Agr Res 54:541–550

    CAS  Google Scholar 

  • Kishore N, Chaudhary HK, Chahota RK, Kumar V, Sood SP, Jeberson S, Tayeng T (2011) Relative efficiency of the maize- and Imperata cylindrica-mediated chromosome elimination approaches for induction of haploids of wheat-rye derivatives. Plant Breed 130:192–194

    Google Scholar 

  • Komeda N, Chaudhary HK, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet Syst 82:241–248

    PubMed  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of Aegilops geniculata introgressions with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    CAS  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat–Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    CAS  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increase of fungal resistance. Theor Appl Genet 96:1004–1012

    CAS  Google Scholar 

  • Leighty G, Taylor JW (1927) Studies in natural hybridization of wheat. J Agric Res 3:865–887

    Google Scholar 

  • Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q, Liu Z (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. Dicoccoides). Theor Appl Genet 119:531–539

    CAS  PubMed  Google Scholar 

  • Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70

    CAS  PubMed  Google Scholar 

  • Li GR, Liu C, Li CH, Zhao JM, Zhou L, Dai G, Yang EN, Yang ZJ (2013) Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat. Mol Breed 31:843–853

    CAS  Google Scholar 

  • Liu Z, Sun Q, Ni Z, Nevo E, Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    CAS  Google Scholar 

  • Liu XQ, Wang L, Chen S, Linand F, Pan QH (2005) Genetic and physical mapping of Pi36 t, a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genomics 274:394–401

    CAS  PubMed  Google Scholar 

  • Liu W, Jin Y, Rouse M, Friebe B, Gill BS, Pumphrey MO (2011a) Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    PubMed  Google Scholar 

  • Liu W, Rouse M, Friebe B, Jin Y, Gill BS, Pumphrey MO (2011b) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yiang T, Sun Q, Liu Z (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccides) on chromosome 2BS. Theor Appl Genet 124:1041–1049

    Google Scholar 

  • Liu J, Chang Z, Zhang X, Yang Z, Li X, Jia J, Zhan H, Guo H, Wang J (2013a) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Google Scholar 

  • Liu W, Danilova T, Rouse M, Bowden R, Friebe B, Gill BS, Pumphrey M (2013) Development and characterization of a compensating wheat- Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177

    CAS  PubMed  Google Scholar 

  • Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Maand H, Zhang Z (2013c) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64:2243–2253. doi:10.1093/jxb/ert084

    Google Scholar 

  • Lobell DB, Burke MB (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    CAS  PubMed  Google Scholar 

  • Logojan AA, Molnár-Láng M (2000) Production of Triticum aestivum–Aegilops biuncialis chromosome additions. Cereal Res Commun 28:221–228

    Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    CAS  PubMed  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. common wheat genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Google Scholar 

  • Ma JX, Zhourh RH, Dong YS, Wang LF (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226

    CAS  Google Scholar 

  • Ma D, Zhou X, Hou L, Bai Y, Li Q, Wang H, Tang M, Jing JX (2013) Genetic analysis and molecular mapping of a stripe rust resistance gene derived from Psathyrostachys huashanica Keng in wheat line H9014-121-5-5-9. Mol Breed. doi:10.1007/s11032-013-9876-2

    PubMed Central  PubMed  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor AJ (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 119:1441–1450

    CAS  PubMed  Google Scholar 

  • Makander R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to fusarium head blight in wheat by expression of Arabidopsis NPR. Mol Plant Microbe Interact 19:123–129

    Google Scholar 

  • Marais GF, McCallum BJ, Snyman E, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541

    CAS  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Google Scholar 

  • Marais F, Marais A, McCallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta req. ex Bertol. to common wheat. Crop Sci 49:871–879

    CAS  Google Scholar 

  • Marais GF, Badenhorst PE, Eksteen A, Pretorius ZA (2010) Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica 171:15–22

    CAS  Google Scholar 

  • Masoudi-Nejad A, Nsauda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res 10:349–357

    CAS  PubMed  Google Scholar 

  • Maxwell JJ, Lyerly JH, Srnic G, Murphy JP, Cowger C, Parks R, Marshall D, Brown-Guedira G, Miranda L (2012) MlNCD1: a novel Aegilops tauschii-derived powdery mildew resistance gene identified in common wheat. Crop Sci 52:1162–1170

    CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:107–116

    Google Scholar 

  • McIntosh RA (1991) Alien sources of disease resistance in bread wheats. In: Sasakuma T, Kinoshita T (eds) Memorial international symposium on cytoplasmatic engineering in wheat. Nuclear and organellar genomes of wheat species. Hokkaido University, Sapporo, Japan, pp 320–332

    Google Scholar 

  • Mello-Sampayo T, Canas AP (1973) Suppressors of meiotic chromosome pairing in common wheat. In: Sears ER, Sears LMS (eds) Proceedings of fourth international wheat genetics symposium. University of Missouri, Columbia, pp 703–713

    Google Scholar 

  • Miranda LM, Murphy JP, Leath S, Marshall DS (2006) Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat Triticum aestivum L. Theor Appl Genet 113:1497–1504

    CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Jahan Q, Vahidy AA (1994) Application of a somatic and meiotic cytological technique to diverse plant genera and species in the Triticeae. Pakistan J Bot 26:353–366

    Google Scholar 

  • Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rRNA multigene family in common wheat. J Hered 81:290–295

    CAS  Google Scholar 

  • Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100:71–78

    CAS  Google Scholar 

  • Naik S, Gill KS, Prakasa VS, Gupta VS, Tamhanka SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    CAS  Google Scholar 

  • Nevo E (2011) Triticum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 407–456

    Google Scholar 

  • O’Mara JG (1940) Cytogenetic studies on Triticale I.A method for determining the effects of Individual Secerale chromosome on Triticum. Genetics 25:401–408

    PubMed  Google Scholar 

  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83

    CAS  PubMed  Google Scholar 

  • Ozkan H, Feldman M (2001) Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops eregrina. Genome 44:1000–1006

    CAS  PubMed  Google Scholar 

  • Patnaik D, Khurana P (2001) Wheat biotechnology: a mini review. Electron J Biotechnol 4:74–102

    Google Scholar 

  • Pellegrineschi A, McLean S, Salgado M, Velazquez L, Hernandez R, Brito RM, Noguera M, Medhurst A, Hoisington D (2001) Transgenic wheat plants: a powerful breeding source. Euphytica 119:135–138

    Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    CAS  PubMed  Google Scholar 

  • Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    CAS  PubMed  Google Scholar 

  • Pratap A, Chaudhary HK (2007) Genetic studies on the effect of triticale × wheat F1s and maize genotypes on haploid induction following wheat × maize system. J Genet Breed 60:119–124

    Google Scholar 

  • Pratap A, Chaudhary HK (2012) Comparative effect of auxin analogues on induction of polyhaploids in triticale and triticale × wheat hybrids through wheat maize system. Indian J Agr Sci 82:66–70

    CAS  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale x wheat hybrids through chromosome elimination technique. Plant Breed 1242:147–153

    Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination technique for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150:339–345

    CAS  Google Scholar 

  • Prins R, Marais GF, Janse BJH, Pretorius ZA, Marais AS (1996) A physical map of the Thinopyrum-derived Lr19 translocation. Genome 39:1013–1019

    Google Scholar 

  • Pukhalskiy VA, Martynov SP, Dobrotvorskaya TV (2000) Analysis of geographical and breeding-related distribution of hybrid necrosis genes in bread wheat Triticum aestivum L. Euphytica 114:233–240

    CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    CAS  PubMed  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene Sr52 effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    CAS  PubMed  Google Scholar 

  • Rather SA, Chaudhary HK, Kaila V (2013) Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun. doi:10.1556/CRC.2013.0038

    Google Scholar 

  • Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P (2012) Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genetics 91:155–161

    Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Rimpau W (1891) Kreuzungsprodukte landwirtschaftlicher Kulturpflanzen IL Kiinstliche Kreuzungen von Weizen X Roggen Landw. Jahrbuch 20:335–371

    Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    CAS  Google Scholar 

  • Saad AS, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 12:33–40

    Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    CAS  Google Scholar 

  • Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn Triticum monococcum. Mol Breed 29:449–456

    CAS  Google Scholar 

  • Schrock E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J, Jalal S, Shaffer LG, Papenhausen P, Kozma C, Phelan MC, Kjeldsen E, Schonberg SA, O’Brien P, Biesecker L, du Manoir S, Ried T (1996) Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Human Genet 101:255–262

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schwarzacher T, Ali N, Chaudhary HK, Graybosch R, Kapalande HV, Kinski E (2011) Fluorescent in situ hybridization as a genetic technology to analyse chromosomal organization of alien wheat recombinant lines. IAEA TECDOC 1664:121–129

    Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science: today and tomorrow. Cambridge University Press, Cambridge, pp 75–89

    Google Scholar 

  • Sears ER, Gustafson JP (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901

    Google Scholar 

  • Sharp GL, Martin JM, Lanning SP, Blake NK, Brey CW, Sivamani E, Qu R, Talbert LE (2002) Field evaluation of transgenic and classical sources of wheat streak mosaic virus resistance. Crop Sci 42:105–110

    PubMed  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    CAS  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2003) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    PubMed  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JC, Al-Niemi T, Dyer WE, David TH, Qu R (2000a) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    CAS  PubMed  Google Scholar 

  • Sivamani E, Brey CW, Dyer WE, Talbert LE, Qu R (2000b) Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase NIb gene. Mol Breed 6:469–477

    CAS  Google Scholar 

  • Sivamani E, Brey CW, Talbert LE, Young MA, Dyer WE, Kaniewski WK, Qu R (2002) Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res 11:31–41

    CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Smith PH, Hadfield J, Hart NJ, Koebner RM, Boyd LA (2007) STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome 50:259–265

    CAS  PubMed  Google Scholar 

  • Somers DJ, Issac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Speicher MR, Gwyn-Ballard S, Ward D (1996) Karyotyping of human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    CAS  PubMed  Google Scholar 

  • Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata both carrying powdery mildew resistance in bread wheat. Breed Sci 56:351–357

    Google Scholar 

  • Takumi S, Murai K, Mori N, Nakamura C (1999) Trans-activation of maize Ds transposable element in transgenic wheat plants expressing the AC transposase gene. Theor Appl Genet 98:947–953

    CAS  Google Scholar 

  • Tamás C, Boglárka N, Rakszegi KM, Wilkinson MD, Yang MS, Tamás LL, Zoltán B (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094

    PubMed  Google Scholar 

  • Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulation in Imperata cylindrica mediated chromosome elimination approach. Plant Breed 131:574–578

    CAS  Google Scholar 

  • Tsujimoto H (1995) Gametocidal genes in wheat and its relatives. IV. Functional relationships between six gametocidal genes. Genome 38:283–289

    CAS  PubMed  Google Scholar 

  • Uday C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza L (2005) High temperature adult plant HTAP stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Google Scholar 

  • Van Campenhout S, Sági L, Vander-Stappen J, Volckaert G (1998) Characterisation of type-I thionin loci from the A, B, D and R genomes of wheat and rye. Theor Appl Genet 96:80–86

    Google Scholar 

  • Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154

    CAS  PubMed  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    CAS  Google Scholar 

  • Vavilov NI (1935) Theoretical basis of plant breeding. VIR, St. Petersburg, USSR

    Google Scholar 

  • Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    CAS  PubMed  Google Scholar 

  • Vishnudasan D, Tripathi MN, Rao U, Khurana P (2005) Assessment of nematode resistance in wheat transgenic plants expressing proteinase inhibitor PIN2 gene. Transgenic Res 14:665–675

    CAS  PubMed  Google Scholar 

  • Wang RRC (1989) Intergeneric hybrids involving perennial Triticeae. Genetics 8:57–64

    Google Scholar 

  • Whelan EDP, Hart GE (1988) A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30:289–292

    Google Scholar 

  • Williamson VM, Thomas V, Ferris H, Dubcovsky J (2013) An translocation confers resistance against root-knot nematodes to common wheat. Crop Sci 53:1412–1418

    Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize Zea mays L. and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    CAS  Google Scholar 

  • Wu H, Sparks CA, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    Google Scholar 

  • Xie C, Sun Q, Ni Z, Yang T, Nevo E, Fahima T (2003) Chromosomal location of a Triticum mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106:341–345

    CAS  PubMed  Google Scholar 

  • Xie W, David RB, Zeng B, Dinoor A, Xie C, Sun Q, Röder MS, Fahima FT (2012a) Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed 29:399–412

    CAS  Google Scholar 

  • Xie W, David RB, Zeng B (2012b) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    CAS  PubMed  Google Scholar 

  • Xu SS, Dundas IS, Pumphrey MO, Jin Y, Faris JD, Cai X, Qi LL, Friebe BR, Gill BS (2008) Chromosome engineering to enhance utility of alien-derived stem rust resistance. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) 11th International wheat genetics symposium 2008 proceedings, vol 1. Sydney University Press, Sydney, pp 12–14

    Google Scholar 

  • Xu ZQ, Zhang SY, Wang R, Wang WL, Zhou XL, Yin JL, Chen J, Jing JX (2010) Genetic analysis and molecular mapping of stripe rust resistance gene in wheat line M8003-5. Acta Agron Sin 36:2116–2123

    CAS  Google Scholar 

  • Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH, Chen XM (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Mukai Y (1989) Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Information Service 69:30–32

    Google Scholar 

  • Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME (2007) Genetic mapping of two powdery mildew resistance genes in einkorn Triticum monococcum L. accessions. Theor Appl Genet 11:351–358

    Google Scholar 

  • Yu XD, Xu ZS, Chen M, Li LC, Ma YZ (2010) Wheat transformation technology and its applications. Scientia Agricultura Sinica 43:1539–1553

    CAS  Google Scholar 

  • Zeller FJ, Kong L, Hartl V, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). Gene Pm29 in line Pova. Euphytica 123:187–194

    CAS  Google Scholar 

  • Zhang L, French R, Langenberg WG, Mitra A (2001) Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Res 10:13–19

    CAS  PubMed  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2004) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987

    CAS  PubMed  Google Scholar 

  • Zhu Z, Kong X, Dong Y, Jia J (2005) Microsatellite markers linked to two Powdery Mildew resistance genes introgressed from T. carthlicum accession PS5 into common wheat. Genome 48:585–590

    CAS  PubMed  Google Scholar 

  • Zohary D, Hopfmann M (2000) Domestication of plants in the old world, 3rd edn. Oxford Univ. Press, Oxford, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Kumar Chaudhary Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chaudhary, H.K. et al. (2014). Wheat. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9572-7_1

Download citation

Publish with us

Policies and ethics