Skip to main content

Adult Prostate Stem Cells

  • Chapter
  • First Online:
Book cover Adult Stem Cells

Abstract

The susceptibility of the prostate to benign prostatic hyperplasia and prostate cancer has prompted research into normal prostate stem cells in order to reveal the underlying mechanisms of these diseases. Yet, it can be challenging to study prostate stem cells because the prostate is a slow cycling tissue. In this chapter, we compare the assays used to study prostate stem cells including castration, lineage tracing and tissue recombination and discuss how they may influence the phenotype of stem cells. We also review the location and characteristics of prostate stem cells. In particular, we focus on the evidence for basal and luminal stem cells, the role of intermediate cells as transit amplifying cells and the relationship of neuroendocrine cells to the other epithelial cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D, 3D:

Two dimensional, three dimensional

ALDH:

Aldehyde dehydrogenase

AR:

Androgen receptor

BCL2:

B-cell CLL/lymphoma 2

BMI1:

BMI1 polycomb ring finger oncogene

BrdU:

Bromodeoxyuridine (5-bromo-2′-deoxyuridine)

CARN:

Castrate-resistant NKX3.1-expressing cell

CD44, etc.:

Cluster of differentiation 44, etc.

CDKN1B:

Cyclin-dependent kinase inhibitor 1B (p27 Kip1)

CGA:

Chromogranin A

COX:

Cytochrome c oxidase

ERG:

v-ets erythroblastosis virus E26 oncogene homolog

FGF10:

Fibroblast growth factor 10

FOXA2:

Forkhead box a2

GSTP1:

Glutathione S-transferase pi 1

HMWK:

High-molecular weight keratin

HMGA2:

High-mobility group AT-hook 2

K8, etc.:

Keratin 8, etc.

Ki67:

Antigen identified by monoclonal antibody Ki-67

Lin:

Lineage expression of haematopoietic markers (CD31, CD45, Ter119)

LSC:

LinSca-1+CD49f+

LSCT:

LinSca-1+CD49fhiTrop2hi

NKX3.1:

NK3 homeobox 1

p63:

Tumour protein p63 TP63

PCNA:

Proliferating cell nuclear antigen

PSA:

Prostate-specific antigen

PTEN:

Phosphatase and tensin homolog

Sca-1:

Stem cell antigen-1

UGE:

Urogenital epithelium

UGM:

Urogenital mesenchyme

UGS:

Urogenital sinus

References

  1. Coffey DS (1992) The molecular biology, endocrinology, and physiology of the prostate and seminal vesicles. In: Walsh PC, Retik AB, Stamey TA, Vaughan ED (eds) Campbell’s urology, 6th edn. WB Saunders, Philadelphia, PA, pp 221–301

    Google Scholar 

  2. McNeal JE (1988) Normal histology of the prostate. Am J Surg Pathol 12(8):619–633

    Article  PubMed  CAS  Google Scholar 

  3. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64(6):2270–2305

    Article  PubMed  CAS  Google Scholar 

  4. Hayashi N, Sugimura Y, Kawamura J, Donjacour AA, Cunha GR (1991) Morphological and functional heterogeneity in the rat prostatic gland. Biol Reprod 45(2):308–321

    Article  PubMed  CAS  Google Scholar 

  5. Lawrence MG, Lai J, Clements JA (2010) Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr Rev 31(4):407–446. doi:10.1210/er.2009-0034

    Article  PubMed  CAS  Google Scholar 

  6. El-Alfy M, Pelletier G, Hermo LS, Labrie F (2000) Unique features of the basal cells of human prostate epithelium. Microsc Res Tech 51(5):436–446

    Article  PubMed  CAS  Google Scholar 

  7. van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J (2000) Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 80(8):1251–1258

    Article  PubMed  Google Scholar 

  8. Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM, Schalken JA (1992) Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 52(22):6182–6187

    PubMed  CAS  Google Scholar 

  9. Hudson DL, Guy AT, Fry P, O’Hare MJ, Watt FM, Masters JR (2001) Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49(2):271–278

    PubMed  CAS  Google Scholar 

  10. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, Loda M (2000) p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157(6):1769–1775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329(5991):568–571. doi:10.1126/science.1189992, 329/5991/568 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wang Y, Hayward S, Cao M, Thayer K, Cunha G (2001) Cell differentiation lineage in the prostate. Differentiation 68(4–5):270–279

    Article  PubMed  CAS  Google Scholar 

  13. Xue Y, Smedts F, Verhofstad A, Debruyne F, de la Rosette J, Schalken J (1998) Cell kinetics of prostate exocrine and neuroendocrine epithelium and their differential interrelationship: new perspectives. Prostate Suppl 8:62–73

    Article  PubMed  CAS  Google Scholar 

  14. Abrahamsson PA, di Sant’Agnese PA (1993) Neuroendocrine cells in the human prostate gland. J Androl 14(5):307–309

    PubMed  CAS  Google Scholar 

  15. Kellokumpu-Lehtonen P, Santti R, Pelliniemi LJ (1980) Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anat Rec 196(3):263–273

    Article  Google Scholar 

  16. Prins GS, Putz O (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation 76(6):641–659. doi:10.1111/j.1432-0436.2008.00277.x, DIF277 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Bieberich CJ, Fujita K, He WW, Jay G (1996) Prostate-specific and androgen-dependent expression of a novel homeobox gene. J Biol Chem 271(50):31779–31782

    Article  PubMed  CAS  Google Scholar 

  18. Mirosevich J, Gao N, Matusik RJ (2005) Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 62(4):339–352

    Article  PubMed  CAS  Google Scholar 

  19. Sugimura Y, Cunha GR, Donjacour AA (1986) Morphogenesis of ductal networks in the mouse prostate. Biol Reprod 34(5):961–971

    Article  PubMed  CAS  Google Scholar 

  20. Lowsley OS (1912) The development of the human prostate gland with reference to the development of other structures at the base of neck of the urinary bladder. Am J Anat 13:299–349

    Article  Google Scholar 

  21. Trompetter M, Smedts F, van der Wijk J, Schoots C, de Jong HJ, Hopman A, de la Rosette J (2008) Keratin profiling in the developing human prostate. A different approach to understanding epithelial lineage. Anticancer Res 28(1A):237–243

    PubMed  Google Scholar 

  22. Garraway LA, Lin D, Signoretti S, Waltregny D, Dilks J, Bhattacharya N, Loda M (2003) Intermediate basal cells of the prostate: in vitro and in vivo characterization. Prostate 55(3):206–218. doi:10.1002/pros.10244

    Article  PubMed  Google Scholar 

  23. Risbridger GP, Wang H, Frydenberg M, Cunha G (2001) The metaplastic effects of estrogen on mouse prostate epithelium: proliferation of cells with basal cell phenotype. Endocrinology 142(6):2443–2450

    PubMed  CAS  Google Scholar 

  24. Bierie B, Nozawa M, Renou JP, Shillingford JM, Morgan F, Oka T, Taketo MM, Cardiff RD, Miyoshi K, Wagner KU, Robinson GW, Hennighausen L (2003) Activation of beta-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene 22(25):3875–3887. doi:10.1038/sj.onc.1206426, 1206426 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Wernert N, Seitz G, Achtstatter T (1987) Immunohistochemical investigation of different cytokeratins and vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma. Pathol Res Pract 182(5):617–626

    Article  PubMed  CAS  Google Scholar 

  26. Letellier G, Perez MJ, Yacoub M, Levillain P, Cussenot O, Fromont G (2007) Epithelial phenotypes in the developing human prostate. J Histochem Cytochem 55(9):885–890. doi:10.1369/jhc.7A7192.2007

    PubMed  CAS  Google Scholar 

  27. Xue Y, Smedts F, Debruyne FM, de la Rosette JJ, Schalken JA (1998) Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 34(4):292–301

    Article  PubMed  CAS  Google Scholar 

  28. Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD, Blanpain C (2012) Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14(11):1131–1138. doi:10.1038/ncb2600

    Article  PubMed  CAS  Google Scholar 

  29. Tunn S, Nass R, Ekkernkamp A, Schulze H, Krieg M (1989) Evaluation of average life span of epithelial and stromal cells of human prostate by superoxide dismutase activity. Prostate 15(3):263–271

    Article  PubMed  CAS  Google Scholar 

  30. Blackwood JK, Williamson SC, Greaves LC, Wilson L, Rigas AC, Sandher R, Pickard RS, Robson CN, Turnbull DM, Taylor RW, Heer R (2011) In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J Pathol 225(2):181–188. doi:10.1002/path.2965

    Article  PubMed  CAS  Google Scholar 

  31. Gaisa NT, Graham TA, McDonald SA, Poulsom R, Heidenreich A, Jakse G, Knuechel R, Wright NA (2011) Clonal architecture of human prostatic epithelium in benign and malignant conditions. J Pathol 225(2):172–180. doi:10.1002/path.2959

    Article  PubMed  CAS  Google Scholar 

  32. Van Keymeulen A, Blanpain C (2012) Tracing epithelial stem cells during development, homeostasis, and repair. J Cell Biol 197(5):575–584. doi:10.1083/jcb.201201041

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wang ZA, Mitrofanova A, Bergren SK, Abate-Shen C, Cardiff RD, Califano A, Shen MM (2013) Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat Cell Biol. doi:10.1038/ncb2697

    Google Scholar 

  34. Evans GS, Chandler JA (1987) Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11(4):339–351

    Article  PubMed  CAS  Google Scholar 

  35. English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11(3):229–242

    Article  PubMed  CAS  Google Scholar 

  36. Sugimura Y, Cunha GR, Donjacour AA (1986) Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol Reprod 34(5):973–983

    Article  PubMed  CAS  Google Scholar 

  37. Isaacs JT (1987) Control of cell proliferation and cell death in the normal and neoplastic prostate: a stem cell model. In: Rodgers C, Coffey D, Cunha GR, Grayhack J, Hinman FJ, Horton R (eds) Benign prostatic hyperplasia. Government Printing Office, Washington, DC, pp 85–94

    Google Scholar 

  38. Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157(7):1257–1265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263):495–500. doi:10.1038/nature08361, nature08361 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Hudson DL, O’Hare M, Watt FM, Masters JR (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 80(8):1243–1250

    Article  PubMed  CAS  Google Scholar 

  41. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117(Pt 16):3539–3545

    Article  PubMed  CAS  Google Scholar 

  42. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 104(1):181–186

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON (2007) Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25(11):2760–2769

    Article  PubMed  CAS  Google Scholar 

  44. Lukacs RU, Memarzadeh S, Wu H, Witte ON (2010) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7(6):682–693. doi:10.1016/j.stem.2010.11.013, S1934-5909(10)00635-1 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Hayward SW (2002) Approaches to modeling stromal-epithelial interactions. J Urol 168(3):1165–1172

    PubMed  Google Scholar 

  46. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 107(6):2610–2615. doi:10.1073/pnas.0913873107, 0913873107 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456(7223):804–808. doi:10.1038/nature07427, nature07427

    Article  PubMed  CAS  Google Scholar 

  48. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 105(52):20882–20887. doi:10.1073/pnas.0811411106, 0811411106 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H (2009) Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69(22):8555–8562. doi:10.1158/0008-5472.CAN-08-4673, 0008-5472.CAN-08-4673 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Hayward SW, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R, Cunha GR (1998) Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation 63(3):131–140

    Article  PubMed  CAS  Google Scholar 

  51. Xin L, Ide H, Kim Y, Dubey P, Witte ON (2003) In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci U S A 100(Suppl 1):11896–11903. doi:10.1073/pnas.1734139100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Wang ZA, Shen MM (2010) Revisiting the concept of cancer stem cells in prostate cancer. Oncogene. doi:10.1038/onc.2010.530, onc2010530 [pii]

    Google Scholar 

  53. Banerjee PP, Banerjee S, Zirkin BR, Brown TR (1998) Lobe-specific telomerase activity in the intact adult brown Norway rat prostate and its regional distribution within the prostatic ducts. Endocrinology 139(2):513–519

    PubMed  CAS  Google Scholar 

  54. Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL (2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci U S A 102(20):7180–7185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, Chen D, Li Y, Guo C, Zhang B, Fazli L, Gleave M, Witte ON, Garraway IP, Wu H (2012) Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 7(8):e42564. doi:10.1371/journal.pone.0042564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Goto K, Salm SN, Coetzee S, Xiong X, Burger PE, Shapiro E, Lepor H, Moscatelli D, Wilson EL (2006) Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 24(8):1859–1868. doi:10.1634/stemcells.2005-0585

    Article  PubMed  CAS  Google Scholar 

  57. Bonkhoff H, Wernert N, Dhom G, Remberger K (1991) Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate 19(2):91–98

    Article  PubMed  CAS  Google Scholar 

  58. Bonkhoff H, Stein U, Remberger K (1994) The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24(3):114–118

    Article  PubMed  CAS  Google Scholar 

  59. De Marzo AM, Meeker AK, Epstein JI, Coffey DS (1998) Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 153(3):911–919. doi:10.1016/S0002-9440(10)65632-5

    Article  PubMed Central  PubMed  Google Scholar 

  60. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, Tu SM, Campbell ML (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52(24):6940–6944

    PubMed  CAS  Google Scholar 

  61. Kyprianou N, Tu H, Jacobs SC (1996) Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Hum Pathol 27(7):668–675

    Article  PubMed  CAS  Google Scholar 

  62. Paradis V, Dargere D, Laurendeau I, Benoit G, Vidaud M, Jardin A, Bedossa P (1999) Expression of the RNA component of human telomerase (hTR) in prostate cancer, prostatic intraepithelial neoplasia, and normal prostate tissue. J Pathol 189(2):213–218. doi:10.1002/(SICI)1096-9896(199910)189:2<213::AID-PATH417>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  63. Bonkhoff H, Stein U, Remberger K (1994) Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 25(1):42–46

    Article  PubMed  CAS  Google Scholar 

  64. Choi N, Zhang B, Zhang L, Ittmann M, Xin L (2012) Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21(2):253–265. doi:10.1016/j.ccr.2012.01.005, S1535-6108(12)00038-4 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37(3):149–160

    Article  PubMed  CAS  Google Scholar 

  66. Uzgare AR, Xu Y, Isaacs JT (2004) In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 91(1):196–205

    Article  PubMed  CAS  Google Scholar 

  67. Brawer MK, Peehl DM, Stamey TA, Bostwick DG (1985) Keratin immunoreactivity in the benign and neoplastic human prostate. Cancer Res 45(8):3663–3667

    PubMed  CAS  Google Scholar 

  68. Niranjan B, Lawrence MG, Papargiris MM, Richards MG, Hussain S, Frydenberg M, Pedersen J, Taylor RA, Risbridger GP (2013) Primary culture and propagation of human prostate epithelial cells. Methods Mol Biol 945:365–382. doi:10.1007/978-1-62703-125-7_22

    Article  PubMed  Google Scholar 

  69. Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE, Rubin MA, Witte ON (2010) Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 70(5):491–501. doi:10.1002/pros.21083

    PubMed Central  PubMed  Google Scholar 

  70. Bhatia B, Jiang M, Suraneni M, Patrawala L, Badeaux M, Schneider-Broussard R, Multani AS, Jeter CR, Calhoun-Davis T, Hu L, Hu J, Tsavachidis S, Zhang W, Chang S, Hayward SW, Tang DG (2008) Critical and distinct roles of p16 and telomerase in regulating the proliferative life span of normal human prostate epithelial progenitor cells. J Biol Chem 283(41):27957–27972. doi:10.1074/jbc.M803467200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Barclay WW, Axanova LS, Chen W, Romero L, Maund SL, Soker S, Lees CJ, Cramer SD (2008) Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation. Stem Cells 26(3):600–610

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Yamamoto H, Masters JR, Dasgupta P, Chandra A, Popert R, Freeman A, Ahmed A (2012) CD49f is an efficient marker of monolayer- and spheroid colony-forming cells of the benign and malignant human prostate. PLoS One 7(10):e46979. doi:10.1371/journal.pone.0046979

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Missol-Kolka E, Karbanova J, Janich P, Haase M, Fargeas CA, Huttner WB, Corbeil D (2011) Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate 71(3):254–267. doi:10.1002/pros.21239

    Article  PubMed  CAS  Google Scholar 

  74. Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, Moscatelli D, Wilson EL (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27(9):2220–2228. doi:10.1002/stem.135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Brown MD, Gilmore PE, Hart CA, Samuel JD, Ramani VA, George NJ, Clarke NW (2007) Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 67(13):1384–1396

    Article  PubMed  Google Scholar 

  76. Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 102(19):6942–6947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Parsons JK, Gage WR, Nelson WG, De Marzo AM (2001) p63 protein expression is rare in prostate adenocarcinoma: implications for cancer diagnosis and carcinogenesis. Urology 58(4):619–624. doi:10.1016/S0090-4295(01)01311-5

    Article  PubMed  CAS  Google Scholar 

  78. Montironi R, Scarpelli M, Cheng L, Lopez-Beltran A, Zhou M, Montorsi F (2012) Do not misinterpret intraductal carcinoma of the prostate as high-grade prostatic intraepithelial neoplasia! Eur Urol 62(3):518–522. doi:10.1016/j.eururo.2012.05.062

    PubMed  Google Scholar 

  79. Zong Y, Huang J, Sankarasharma D, Morikawa T, Fukayama M, Epstein JI, Chada KK, Witte ON (2012) Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1217982109

    Google Scholar 

  80. Taylor RA, Toivanen R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate Cancer B, Collins AT, Maitland NJ, Risbridger GP (2012) Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells 30(6):1087–1096. doi:10.1002/stem.1094

    Article  PubMed  CAS  Google Scholar 

  81. Evans GS, Chandler JA (1987) Cell proliferation studies in rat prostate. I. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate 10(2):163–178

    Article  PubMed  CAS  Google Scholar 

  82. Peehl DM (2005) Primary cell cultures as models of prostate cancer development. Endocr Relat Cancer 12(1):19–47. doi:10.1677/erc.1.00795, 12/1/19 [pii]

    Article  PubMed  CAS  Google Scholar 

  83. Kurita T, Medina RT, Mills AA, Cunha GR (2004) Role of p63 and basal cells in the prostate. Development 131(20):4955–4964

    Article  PubMed  CAS  Google Scholar 

  84. Signoretti S, Pires MM, Lindauer M, Horner JW, Grisanzio C, Dhar S, Majumder P, McKeon F, Kantoff PW, Sellers WR, Loda M (2005) p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci U S A 102(32):11355–11360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Liu J, Pascal LE, Isharwal S, Metzger D, Ramos Garcia R, Pilch J, Kasper S, Williams K, Basse PH, Nelson JB, Chambon P, Wang Z (2011) Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol Endocrinol 25(11):1849–1857. doi:10.1210/me.2011-1081, me.2011-1081 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Schalken JA, van Leenders G (2003) Cellular and molecular biology of the prostate: stem cell biology. Urology 62(5 Suppl 1):11–20

    Article  PubMed  Google Scholar 

  87. van Leenders GJ, Schalken JA (2003) Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol 46(Suppl):S3–S10

    Article  PubMed  Google Scholar 

  88. Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50

    Article  PubMed  CAS  Google Scholar 

  89. Xue Y, Verhofstad A, Lange W, Smedts F, Debruyne F, de la Rosette J, Schalken J (1997) Prostatic neuroendocrine cells have a unique keratin expression pattern and do not express Bcl-2: cell kinetic features of neuroendocrine cells in the human prostate. Am J Pathol 151(6):1759–1765

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Verhagen AP, Aalders TW, Ramaekers FC, Debruyne FM, Schalken JA (1988) Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 13(1):25–38

    Article  PubMed  CAS  Google Scholar 

  91. Aumuller G, Leonhardt M, Renneberg H, von Rahden B, Bjartell A, Abrahamsson PA (2001) Semiquantitative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells. Prostate 46(2):108–115

    Article  PubMed  CAS  Google Scholar 

  92. Aumuller G, Leonhardt M, Janssen M, Konrad L, Bjartell A, Abrahamsson PA (1999) Neurogenic origin of human prostate endocrine cells. Urology 53(5):1041–1048

    Article  PubMed  CAS  Google Scholar 

  93. Bonkhoff H (1998) Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation, and androgen receptor status. Prostate Suppl 8:18–22

    Article  PubMed  CAS  Google Scholar 

  94. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193. doi:10.1038/nature10573

    Article  PubMed  Google Scholar 

  95. Taylor RA, Wang H, Wilkinson SE, Richards MG, Britt KL, Vaillant F, Lindeman GJ, Visvader JE, Cunha GR, St John J, Risbridger GP (2009) Lineage enforcement by inductive mesenchyme on adult epithelial stem cells across developmental germ layers. Stem Cells 27(12):3032–3042. doi:10.1002/stem.244

    PubMed  CAS  Google Scholar 

  96. Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, Blanpain C, Fuchs E (2012) Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150(1):136–150. doi:10.1016/j.cell.2012.04.045

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, Simons BD, Blanpain C (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262. doi:10.1038/nature11393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge John Pedersen (TissuPath Pathology) and the Australian Prostate Cancer BioResource for human prostate tissue. M.G.L, C.E.G. and G.P.R. hold fellowships from the National Health and Medical Research Council (1035721, 1042298, 1002648). M.G.L. is also funded by a Movember Young Investigator Grant awarded through Prostate Cancer Foundation of Australia’s Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail P. Risbridger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawrence, M.G., Toivanen, R., Takizawa, I., Gargett, C.E., Risbridger, G.P. (2014). Adult Prostate Stem Cells. In: Turksen, K. (eds) Adult Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9569-7_11

Download citation

Publish with us

Policies and ethics