Advertisement

Timetabling

  • Marie E. Schmidt
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 89)

Abstract

Given a public transportation system and a line concept with frequencies, the next step in public transportation planning is to establish a timetable, i.e., to fix the exact points in time when the trains should arrive and depart at the stations. This decision process is known under the name of timetabling or train scheduling.

Keywords

Travel Time Timetabling Problem Slack Time Integer Programming Formulation Destination Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AMS06]
    N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms, 2(2):153–177, 2006.CrossRefMathSciNetGoogle Scholar
  2. [Anh12]
    J. Anhalt. Eine iterative Heuristik für aperiodische Fahrplangestaltung mit OD-Paaren. Master’s thesis, Georg-August-Universität Göttingen, 2012. (in German).Google Scholar
  3. [BGLR93]
    M. Bellare, S. Goldwasser, C. Lund, and A. Russel. Efficient probabilistically checkable proofs and applications to approximation. In STOC ’93 Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 294–304, New York, USA, 1993. ACM.Google Scholar
  4. [BK10]
    R. Burdett and E. Kozan. A sequencing approach for train timetabling. OR Spectrum, 32(1):163–193, 2010.CrossRefzbMATHGoogle Scholar
  5. [BLNN98]
    U. Brännlund, P. O. Lindberg, A. Nou, and J. E. Nilsson. Railway timetabling using lagrangian relaxation. Transportation Science, 32(4):358, 1998.Google Scholar
  6. [CCT10]
    V. Cacchiani, A. Caprara, and P. Toth. Non-cyclic train timetabling and comparability graphs. Operations Research Letters, 38(3):179–184, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [CDD+07]
    S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. On the interaction between robust timetable planning and delay management. Technical Report ARRIVAL-TR-0116, ARRIVAL project, 2007.Google Scholar
  8. [CFT02]
    A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling problem. Operations Research, 50(5):851–861, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [CR11]
    R. Cordone and F. Redaelli. Optimizing the demand captured by a railway system with a regular timetable. Transportation Research Part B: Methodological, 45(2):430–446, 2011.CrossRefGoogle Scholar
  10. [CT12]
    V. Cacchiani and P. Toth. Nominal and robust train timetabling problems. European Journal of Operational Research, 219(3):727–737, 2012.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [CTV98]
    J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing and scheduling. Transportation Science, 32(4):380–404, November 1998.CrossRefzbMATHGoogle Scholar
  12. [DV95]
    J. R. Daduna and S. Voß. Practical experiences in schedule synchronization. In J. R. Daduna, I. Branco, and J. M. Pinto Paixão, editors, Computer-aided transit scheduling: proceedings of the Sixth International Workshop on Computer-aided Scheduling of Public Transport, volume 430 of Lecture Notes in Economics and Mathematical Systems, 1995.Google Scholar
  13. [Fei98]
    U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45:634–652, July 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [FM09]
    M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R.H. Möhring, and C.D. Zaroliagis, editors, Robust and online large-scale optimization, volume 5868 of Lecture Note on Computer Science, pages 61–84. Springer, 2009.Google Scholar
  15. [FSZ09]
    M. Fischetti, S. Salvagnin, and A. Zanette. Fast approaches to improve the robustness of a railway timetable. Transportation Science, 43:321–335, 2009.CrossRefGoogle Scholar
  16. [GJ79]
    M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  17. [GS10]
    M. Goerigk and A. Schöbel. An empirical analysis of robustness concepts for timetabling. In T. Erlebach and M. Lübbecke, editors, Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS), volume 14 of OASIcs, pages 100–113, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.Google Scholar
  18. [GS11]
    M. Goerigk and A. Schöbel. Engineering the modulo network simplex heuristic for the periodic timetabling problem. In P. M. Pardalos and S. Rebennack, editors, Experimental Algorithms, volume 6630 of Lecture Notes in Computer Science, pages 181–192. Springer Berlin Heidelberg, 2011.Google Scholar
  19. [GS13]
    M. Goerigk and A. Schöbel. Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers & Operations Research, 40(5):1363–1370, 2013.CrossRefMathSciNetGoogle Scholar
  20. [HKF97]
    A. Higgins, E. Kozan, and L. Ferreira. Heuristic techniques for single line train scheduling. Journal of Heuristics, 3(1):43–62, 1997.CrossRefzbMATHGoogle Scholar
  21. [HPB13]
    M. Heydar, M. E. H. Petering, and D. R. Bergmann. Mixed integer programming for minimizing the period of a cyclic railway timetable for a single track with two train types. Computers & Industrial Engineering, 66(1):171–185, 2013.CrossRefGoogle Scholar
  22. [Kas10]
    M. Kaspi. Service oriented train timetabling. Master’s thesis, Tel Aviv University, 2010.Google Scholar
  23. [Kin08]
    M. Kinder. Models for periodic timetabling. Master’s thesis, Technische Universität Berlin, 2008.Google Scholar
  24. [KMH+08]
    L. Kroon, G. Maróti, M. R. Helmrich, M. Vromans, and R. Dekker. Stochastic improvement of cyclic railway timetables. Transportation Research Part B: Methodological, 42(6):553–570, 2008.CrossRefGoogle Scholar
  25. [KP03]
    L. G. Kroon and L. W. P. Peeters. A variable trip time model for cyclic railway timetabling. Transportation Science, 37:198–212, 2003.CrossRefGoogle Scholar
  26. [Lie05]
    C. Liebchen. A cut-based heuristic to produce almost feasible periodic railway timetables. In S. E. Nikoletseas, editor, Experimental and Efficient Algorithms, volume 3503 of Lecture Notes in Computer Science, pages 354–366. Springer Berlin Heidelberg, 2005.Google Scholar
  27. [Lie06]
    C. Liebchen. Periodic Timetable Optimization in Public Transport. PhD thesis, Technische Universität Berlin, 2006. published by dissertation.de.Google Scholar
  28. [Lin00]
    T. Lindner. Train Schedule Optimization in Public Rail Transport. PhD thesis, Technische Universität Braunschweig, 2000.Google Scholar
  29. [LLER11]
    R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and methods. OR Spectrum, 33:843–883, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [LLMS09]
    C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. The concept of recoverable robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, editors, Robust and online large-scale optimization, volume 5868, pages 1–27. Springer, 2009.Google Scholar
  31. [LM07b]
    C. Liebchen and R. H. Möhring. The modeling power of the periodic event scheduling problem: Railway timetables– and beyond. In F. Geraets, L. Kroon, A. Schöbel, D. Wagner, and C. D. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages 3–40. Springer Berlin Heidelberg, 2007.Google Scholar
  32. [LPW08]
    C. Liebchen, M. Proksch, and F. H. Wagner. Performance of algorithms for periodic timetable optimization. In G. Fandel, W. Trockel, M. Hickman, P. Mirchandani, and S. Voß, editors, Computer-aided Systems in Public Transport, volume 600 of Lecture Notes in Economics and Mathematical Systems, pages 151–180. Springer Berlin Heidelberg, 2008.Google Scholar
  33. [LSS+10]
    C. Liebchen, M. Schachtebeck, A. Schöbel, S. Stiller, and A. Prigge. Computing delay resistant railway timetables. Computers & Operations Research, 37(5):857–868, 2010.CrossRefzbMATHGoogle Scholar
  34. [Lüb09]
    J. Lübbe. Passagierrouting und Taktfahrplanoptimierung. Master’s thesis, Technische Universität Berlin, 2009. (in German).Google Scholar
  35. [LZ05]
    T. Lindner and U. T. Zimmermann. Cost optimal periodic train scheduling. Mathematical Methods of Operations Research, 62(2):281–295, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [Nac98]
    K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Deutsches Zentrum für Luft– und Raumfahrt, Institut für Flugführung, Braunschweig, 1998. Habilitationsschrift.Google Scholar
  37. [NO08]
    K. Nachtigall and J. Opitz. Solving periodic timetable optimisation problems by modulo simplex calculations. In M. Fischetti and P. Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.Google Scholar
  38. [NV96]
    K. Nachtigall and S. Voget. A genetic algorithm approach to periodic railway synchronization. Computers & Operations Research, 23(5):453–463, 1996.CrossRefzbMATHGoogle Scholar
  39. [Odi96]
    M. A. Odijk. A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research Part B, 30(6):455–464, 1996.CrossRefGoogle Scholar
  40. [Odi98]
    M. A. Odijk. Railway Timetable Generation. PhD thesis, Technische Universiteit Delft, 1998.Google Scholar
  41. [ORv06]
    M. A. Odijk, H. E. Romeijn, and H. van Maaren. Generation of classes of robust periodic railway timetables. Computers & Operations Research, 33(8):2283–2299, 2006.CrossRefzbMATHGoogle Scholar
  42. [Pee03]
    L. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus University Rotterdam, 2003.Google Scholar
  43. [Roc84]
    R. T. Rockafellar. Network flows and monotropic optimization. John Wiley & Sons, Inc., 1984.zbMATHGoogle Scholar
  44. [RS97]
    R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, pages 475–484, New York, NY, USA, 1997. ACM.Google Scholar
  45. [Sch10]
    M. Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness, and Integration. PhD thesis, Georg-August-Universität Göttingen, 2010.Google Scholar
  46. [SG13]
    M. Siebert and M. Goerigk. An experimental comparison of periodic timetabling models. Computers & Operations Research, 40(10):2251–2259, 2013.CrossRefMathSciNetGoogle Scholar
  47. [SK09]
    A. Schöbel and A. Kratz. A bicriteria approach for robust timetabling. In R. K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 119–144. Springer Berlin Heidelberg, 2009.Google Scholar
  48. [SS10b]
    M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public transportation models. In T. Erlebach and M. Lübbecke, editors, Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 14 of OASIcs, pages 156–169, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.Google Scholar
  49. [SS12b]
    M. Schmidt and A. Schöbel. Timetabling with passenger routing. Accepted for publication in OR Spectrum. 2013.Google Scholar
  50. [SU89]
    P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2:550–581, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [WYFL08]
    R. C. W. Wong, T. W. Y. Yuen, K. W. Fung, and J. M. Y. Leung. Optimizing timetable synchronization for rail mass transit. Transportation Science, 42(1):57–69, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marie E. Schmidt
    • 1
  1. 1.Institute for Numerical and Applied MathematicsGöttingenGermany

Personalised recommendations