Advertisement

Line Planning

  • Marie E. Schmidt
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 89)

Abstract

Given the public transportation network, i.e., information about the location of the stations, the tracks connecting the stations, and the lengths of the tracks, line planning aims at determining the lines, i.e., the routes served regularly by a train. Furthermore, in many line planning approaches, not only the routes which should be served are considered, but also the frequencies of the services are planned.

Keywords

Travel Time Short Path Steiner Tree Problem Linear Network Line Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AMO93]
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Prentice Hall, Inc., 1993.zbMATHGoogle Scholar
  2. [BC89]
    J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path problem. Networks, 19(4):379–394, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [BGP07]
    R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A column-generation approach to line planning in public transport. Transportation Science, 41(1):123–132, 2007.CrossRefGoogle Scholar
  4. [BGP08]
    R. Borndörfer, M. Grötschel, and M. E. Pfetsch. Models for line planning in public transport. In M. Hickman, P. Mirchandani, and S. Voß, editors, Computer-aided Systems in Public Transport, volume 600 of Lecture Notes in Economics and Mathematical Systems, pages 363–378. Springer Berlin Heidelberg, 2008.Google Scholar
  5. [BK12]
    R. Borndörfer and M. Karbstein. A Direct Connection Approach to Integrated Line Planning and Passenger Routing. In D. Delling and L. Liberti, editors, 12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 25 of OpenAccess Series in Informatics (OASIcs), pages 47–57, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.Google Scholar
  6. [BKZ97]
    M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann. Optimal lines for railway systems. European Journal of Operational Research, 96(1):54–63, 1997.CrossRefzbMATHGoogle Scholar
  7. [BLL04]
    M. R. Bussieck, T. Lindner, and M. E. Lübbecke. A fast algorithm for near cost optimal line plans. Mathematical Methods of Operations Research, 59:205–220, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [BN10]
    R. Borndörfer and M. Neumann. Models for line planning with transfers. Technical Report 10-11, ZIB, Takustr.7, 14195 Berlin, 2010.Google Scholar
  9. [BNP09]
    R. Borndörfer, M. Neumann, and M. E. Pfetsch. The line connectivity problem. In B. Fleischmann, K.-H. Borgwardt, R. Klein, and A. Tuma, editors, Operations Research Proceedings 2008, pages 557–562. Springer Berlin Heidelberg, 2009.Google Scholar
  10. [Bus98]
    M. Bussieck. Optimal Lines in Public Rail Transport. PhD thesis, Technische Universität Braunschweig, 1998.Google Scholar
  11. [CF95]
    I. Constantin and M. Florian. Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. International Transactions in Operational Research, 2(2):149, 1995.Google Scholar
  12. [Chu84]
    T. A. Chua. The planning of urban bus routes and frequencies: A survey. Transportation, 12:147–172, 1984.CrossRefGoogle Scholar
  13. [CvDZ98]
    M. T. Claessens, N. M. van Dijk, and P. J. Zwanefeld. Cost optimal allocation of rail passenger lines. European Journal of Operational Research, 110:474–489, 1998.CrossRefzbMATHGoogle Scholar
  14. [Die78]
    H. Dienst. Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. PhD thesis, Technische Universität Braunschweig, 1978. (in German).Google Scholar
  15. [dMI06]
    L. dell’Olio, J. L. Moura, and A. Ibeas. Bi-level mathematical programming model for locating bus stops and optimizing frequencies. Transportation Research Record: Journal of the Transportation Research Board, 1971, 2006.Google Scholar
  16. [Fuh08]
    R. Fuhse. Heuristiken zur Erstellung von Linienkonzepten. Master’s thesis, Georg-August-Universität Göttingen, 2008. (in German).Google Scholar
  17. [Gib85]
    A. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.Google Scholar
  18. [GJ79]
    M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  19. [GSS04]
    Z. Gao, H. Sun, and L. L. Shan. A continuous equilibrium network design model and algorithm for transit systems. Transportation Research Part B: Methodological, 38(3):235–250, 2004.CrossRefGoogle Scholar
  20. [GvHK04]
    J.-W. Goossens, S. van Hoesel, and L. Kroon. A branch-and-cut approach for solving railway line planning problems. Transportation Science, 38(3):379–393, 2004.CrossRefGoogle Scholar
  21. [GvHK06]
    J.-W. Goossens, S. van Hoesel, and L. Kroon. On solving multi-type railway line planning problems. European Journal of Operational Research, 168(2):403–424, 2006. Feature Cluster on Mathematical Finance and Risk Management.Google Scholar
  22. [GYW06]
    J. F. Guan, Hai Yang, and S.C. Wirasinghe. Simultaneous optimization of transit line configuration and passenger line assignment. Transportation Research Part B, 40(10):885–902, 2006.Google Scholar
  23. [IC95]
    Y. Israeli and A. Ceder. Transit route design using scheduling and multiobjective programming techniques. In J. R. Daduna, I. Branco, and J. M. Pinto Paixão, editors, Computer-aided transit scheduling, volume 430 of Lecture Notes in Economics and Mathematical Systems, pages 56–75, Berlin, 1995. Springer.Google Scholar
  24. [LS67]
    W. Lampkin and P. D. Saalmans. The design of routes, service frequencies, and schedules for a municipal bus undertaking: a case study. Operational Research Quartely, 18:375–397, 1967.CrossRefGoogle Scholar
  25. [Man80]
    C. E. Mandl. Evaluation and optimization of urban public transportation networks. European Journal of Operational Research, 5(6):396–404, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [NJ08]
    K. Nachtigall and K. Jerosch. Simultaneous network line planning and traffic assignment. In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, 2008.Google Scholar
  27. [PB06]
    M. Pfetsch and R. Borndörfer. Routing in line planning for public transport. In H.-D. Haasis, H. Kopfer, and J. Schönberger, editors, Operations Research Proceedings 2005, volume 2005 of Operations Research Proceedings, pages 405–410. Springer Berlin Heidelberg, 2006.Google Scholar
  28. [Phi93]
    C. A. Phillips. The network inhibition problem. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 776–785, New York, 1993. ACM.Google Scholar
  29. [SBP74]
    L. A. Silman, Z. Barzily, and U. Passy. Planning the route system for urban busses. Computers & Operations research, 1:201–211, 1974.CrossRefGoogle Scholar
  30. [Sch05]
    S. Scholl. Customer-Oriented Line Planning. PhD thesis, Technische Universität Kaiserslautern, 2005. published by dissertation.de.Google Scholar
  31. [Sch11]
    A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum, pages 1–20, 2011. 10.1007/s00291-011-0251-6.Google Scholar
  32. [Sch12]
    M. Schmidt. Line planning with equilibrium routing. Technical report, Preprint series, Institute for Numerical and Applied Mathematics, Georg-August-University Göttingen, 2012. submitted.Google Scholar
  33. [Son79]
    H. Sonntag. Ein heuristisches Verfahren zum Entwurf nachfrageorientierter Linienführung im öffentlichen Personennahverkehr. ZOR - Zeitschrift für Operations-Research, 23:B15, 1979. (in German).Google Scholar
  34. [SS06]
    A. Schöbel and S. Scholl. Line planning with minimal transfers. In 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl Seminar Proceedings, 2006.Google Scholar
  35. [SS10b]
    M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public transportation models. In T. Erlebach and M. Lübbecke, editors, Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 14 of OASIcs, pages 156–169, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.Google Scholar
  36. [SS12a]
    M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public transportation models. Technical report, Preprint series, Institute for Numerical and Applied Mathematics, Georg-August-University Göttingen, 2012. submitted.Google Scholar
  37. [TTBP11]
    L. M. Torres, R. Torres, R. Borndörfer, and M. E. Pfetsch. Line planning on tree networks with applications to the quito trolebús system. International Transactions in Operational Research, 18:455–472, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [WC96]
    Z. Wang and J. Crowcroft. Quality of service routing for supporting multimedia applications. IEEE Journal on Selected areas in communications, 14(7):1228–1234, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marie E. Schmidt
    • 1
  1. 1.Institute for Numerical and Applied MathematicsGöttingenGermany

Personalised recommendations