Advertisement

Introduction

  • Marie E. Schmidt
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 89)

Abstract

This book treats three optimization problems arising in public railway transportation, namely

Keywords

Public Transportation Optimal Route Route Choice Short Path Problem Integer Programming Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AMO93]
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Prentice Hall, Inc., 1993.zbMATHGoogle Scholar
  2. [BLZ97]
    M. R. Bussieck, T. Lindner, and U. T. Zimmermann. Discrete optimization in public rail transport. Mathematical Programming, 79:415–444, 1997.zbMATHMathSciNetGoogle Scholar
  3. [CKT10]
    A. Caprara, L. Kroon, and P. Toth. Optimization problems in passenger railway systems. In J. J. Cochran, L. A. Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc., 2010.Google Scholar
  4. [DH07]
    G. Desaulniers and M. D. Hickmann. Public transit. In Handbook in OR & MS, volume 14, pages 69–127. Elsevier, 2007.Google Scholar
  5. [Die06]
    R. Diestel. Graph Theory. Springer, 3rd edition, 2006.Google Scholar
  6. [FT87]
    M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34:596–615, 1987.CrossRefMathSciNetGoogle Scholar
  7. [GH08]
    V. Guihaire and J.-T. Hao. Transit network design and scheduling: A global review. Transportation Research Part E, 42:1251–1273, 2008.Google Scholar
  8. [GJ79]
    M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.zbMATHGoogle Scholar
  9. [GJP+04]
    M. Gatto, R. Jacob, L. Peeters, B. Weber, and P. Widmayer. Theory on the tracks: A selection of railway optimization problems. Bulletin of the EATCS, 84:41–70, 2004.zbMATHMathSciNetGoogle Scholar
  10. [HKLV05]
    D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans. Operations research in passenger railway transportation. Statistica Neerlandica, 59:467–497, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [LM07a]
    C. Liebchen and R. Möhring. The modeling power of the periodic event scheduling problem: Railway timetables and beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. Zaroliagis, editors, Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages 3–40. Springer Berlin Heidelberg, 2007.Google Scholar
  12. [NW88]
    G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marie E. Schmidt
    • 1
  1. 1.Institute for Numerical and Applied MathematicsGöttingenGermany

Personalised recommendations