Skip to main content

Expression of Reactive Oxygen Species in Junctional and Pocket Epithelium

  • Chapter
  • First Online:
Book cover Studies on Periodontal Disease

Abstract

The generation of reactive oxygen species (ROS) is part of an antimicrobial response to pathogenic challenge and potentially has a deleterious effect on local periodontal tissues. Junctional epithelial cells in periodontal tissue form the initial defensive line against bacterial challenge. In response to this challenge, junctional epithelial cell proliferation and migration occurs and is a key biological response that is associated with the initiation of periodontal attachment loss. The regulation of this process and its contribution to the initiation and progression of disease are not fully understood, but the local expression of antimicrobial peptides, cytokines, and growth factors is involved. However, the expression of ROS-associated molecules by epithelial cells appears to play a significant role in disease onset as well. In this chapter, we summarize the structural organization of junctional and pocket epithelium, the expression of ROS molecules in this cellular compartment, and their possible roles in mediating periodontal disease onset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale BA, Fredericks LP (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 7:119–133

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Pomahac B, Svensjo T, Tao F, Brown H, Eriksson E (1998) Tissue engineering of skin. Crit Rev Oral Biol Med 9:333–344

    CAS  PubMed  Google Scholar 

  3. Presland RB, Dale BA (2000) Epithelial structural protein of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med 11:383–408

    CAS  PubMed  Google Scholar 

  4. Abiko Y, Saitoh M, Nishimura M, Yamazaki M, Sawamura D, Kaku T (2007) Role of beta-defensins in oral epithelial health and disease. Med Mol Morphol 40:179–184

    CAS  PubMed  Google Scholar 

  5. Amerongen AV, Veerman EC (2002) Saliva – the defender of the oral cavity. Oral Dis 8:12–22

    PubMed  Google Scholar 

  6. Niyonsaba F, Ogawa H (2005) Protective roles of the skin against infection: implication of naturally occurring human antimicrobial against beta-defensins, cathelicidin LL-37 and lysozome. J Dermatol Sci 40:157–168

    CAS  PubMed  Google Scholar 

  7. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63:1294–1313

    CAS  PubMed  Google Scholar 

  8. Maisetta G, Botani G, Esin S, Raco G, Bottai D, Favilli F, Florio W, Campa M (2005) Susceptibility of Streptococcus mutants and Actinobacillus actinomycetemcomitans to bactericidal activity of human beta-defensin 3 in biological fluids. Antimicrob Agents Chemother 49:1245–1248

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M (2005) Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, β-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 55:888–896

    CAS  PubMed  Google Scholar 

  10. Schroeder HE, Listgarten MA (1997) The gingival tissues: the architecture of periodontal protection. Periodontol 2000 13:91–120

    CAS  PubMed  Google Scholar 

  11. Bosshardt DD, Lang NP (2005) The junctional epithelium: from health to disease. J Dent Res 84:9–20

    CAS  PubMed  Google Scholar 

  12. Larjava H, Koivisto L, Häkkinen L, Heino J (2011) Epithelial integrins with special reference to oral epithelia. J Dent Res 90:1367–1376

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Schroeder HE (1996) The junctional epithelium: origin, structure, and significance. A review. Acta Med Dent Helv 1:155–167

    Google Scholar 

  14. Lange D, Schroeder HE (1971) Cytochemistry and ultrastructure of gingival sulcus cells. Helv Odontol Acta 15:65–86

    CAS  Google Scholar 

  15. Schroeder HE (ed) (1981) Differentiation of the human oral stratified epithelia. S Karger Pub, Basel

    Google Scholar 

  16. Schroeder HE, Münzel-Pedrazzoli S (1970) Morphometric analysis comparing junctional and oral epithelium of normal human gingiva. Helv Odontol Acta 14:53–66

    CAS  PubMed  Google Scholar 

  17. Yamasaki A, Nikai H, Niitani K, Ijuhin N (1979) Ultrastructure of the junctional epithelium of germfree rat gingiva. J Periodontol 50:641–648

    CAS  PubMed  Google Scholar 

  18. Saito I, Watanabe O, Kawahara H, Igarashi Y, Yamamura T, Shimono M (1981) Intercellular junctions and the permeability barrier in the junctional epithelium. A study with freeze-fracture and thin sectioning. J Periodontal Res 16:467–480

    CAS  PubMed  Google Scholar 

  19. Sasaki T, Nakagawa T, Tominaga H, Kawahara T, Higashi S (1981) Electron microscopy of the junctional epithelium of kitten gingiva. Bull Tokyo Dent Coll 22:139–149

    CAS  PubMed  Google Scholar 

  20. Hashimoto S, Yamamura T, Shimono M (1986) Morphometric analysis of the intercellular space and desmosomes of rat junctional epithelium. J Periodontal Res 21:510–520

    CAS  PubMed  Google Scholar 

  21. Schiött CR, Löe H (1970) The origin and variation in number of leukocytes in the human saliva. J Periodontal Res 5:36–41

    PubMed  Google Scholar 

  22. Schroeder HE (1973) Transmigration and infiltration of leucocytes in human junctional epithelium. Helv Odontol Acta 17:6–18

    CAS  PubMed  Google Scholar 

  23. Juhl M, Stoltze K, Reibel J (1988) Distribution of Langerhans cells in clinically healthy human gingival epithelium with special emphasis on junctional epithelium. Scand J Dent Res 96:199–208

    CAS  PubMed  Google Scholar 

  24. Byers MR, Holland GR (1977) Trigeminal nerve endings in gingiva, junctional epithelium and periodontal ligament of rat molars as demonstrated by autoradiography. Anat Rec 188:509–523

    CAS  PubMed  Google Scholar 

  25. Byers MR, Mecifi KB, Kimberly CL (1987) Numerous nerves with calcitonin gene-related peptide-like immunoreactivity innervate junctional epithelium of rats. Brain Res 419:311–314

    CAS  PubMed  Google Scholar 

  26. Kondo T, Ayasaka N, Nagata E, Tanaka T (1992) A light and electron microscopic anterograde WGA-HRP tracing study on the sensory innervation of junctional and sulcular epithelium in the rat molar. J Dent Res 71:60–65

    CAS  PubMed  Google Scholar 

  27. Maeda T, Sodeyama T, Hara K, Takano Y (1994) Evidence for the existence of intraepithelial nerve endings in the junctional epithelium of rat molars: an immunohistochemical study using protein gene product 9.5 (PGP 9.5) antibody. J Periodontal Res 29:377–385

    CAS  PubMed  Google Scholar 

  28. Overman DO, Salonen JI (1994) Characterization of the human junctional epithelial cells directly attached to the tooth (DAT cells) in periodontal disease. J Dent Res 73:1818–1823

    CAS  PubMed  Google Scholar 

  29. Skougaard M (1965) Turnover of the gingival epithelium in marmosets. Acta Odontol Scand 23:623–643

    CAS  PubMed  Google Scholar 

  30. Skougaard MR (1970) Cell renewal, with special reference to the gingival epithelium. Adv Oral Biol 4:261–288

    CAS  PubMed  Google Scholar 

  31. Demetriou NA, Ramfjord SP (1972) Premitotic labeling and inflammation in the gingiva of Rhesus monkeys. J Periodontol 43:606–613

    CAS  PubMed  Google Scholar 

  32. Salonen JI (1994) Proliferative potential of the attached cells of human junctional epithelium. J Periodontal Res 29:41–45

    CAS  PubMed  Google Scholar 

  33. Hormia M, Sahlberg C, Thesleff I, Airenne T (1998) The epithelium-tooth interface – a basal lamina rich in laminin-5 and lacking other known laminin isoforms. J Dent Res 77:1479–1485

    CAS  PubMed  Google Scholar 

  34. Hormia M, Owaribe K, Virtanen I (2001) The dento-epithelial junction: cell adhesion by type I hemidesmosomes in the absence of a true basal lamina. J Periodontol 72:788–797

    CAS  PubMed  Google Scholar 

  35. Oksonen J, Sorokin LM, Virtanen, Hormia M (2001) The junctional epithelium around murine teeth differs from gingival epithelium in its basement membrane composition. J Dent Res 80:2093–2097

    CAS  PubMed  Google Scholar 

  36. Smola H, Stark HJ, Thiekötter G, Mirancea N, Krieg T, Fusenig NE (1998) Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp Cell Res 239:399–410

    CAS  PubMed  Google Scholar 

  37. Kainulainen T, Häkkinen L, Hamidi S, Larjava K, Kallioinen M, Peltonen J, Salo T, Larjava H, Oikarinen A (1998) Laminin-5 expression is independent of the injury and the microenvironment during reepithelialization of wounds. J Histochem Cytochem 46:353–360

    CAS  PubMed  Google Scholar 

  38. Amano S, Akutsu N, Ogura Y, Nishiyama T (2004) Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids. Br J Dermatol 151:961–970

    CAS  PubMed  Google Scholar 

  39. Li M, Firth JD, Putnins EE (2005) Keratinocyte growth factor-1 expression in healthy and diseased human periodontal tissues. J Periodontal Res 40:118–128

    CAS  PubMed  Google Scholar 

  40. Ghannad F, Nica D, Fulle MI, Grenier D, Putnins EE, Johnston S, Eslami A, Koivisto L, Jiang G, McKee MD, Häkkinen L, Larjava H (2008) Absence of αvβ6 integrin is linked to initiation and progression of periodontal disease. Am J Pathol 172:1271–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    CAS  PubMed  Google Scholar 

  42. Gräber HG, Conrads G, Wilharm J, Lampert F (1999) Role of interactions between integrins and extracellular matrix components in healthy epithelial tissue and establishment of a long junctional epithelium during periodontal wound healing: a review. J Periodontol 70:1511–1522

    PubMed  Google Scholar 

  43. Danen EH, Sonnenberg A (2003) Integrins in regulation of tissue development and function. J Pathol 201:632–641

    CAS  PubMed  Google Scholar 

  44. Hormia M, Virtanen I, Quaranta V (1992) Immunolocalization of integrin α6β4 in mouse junctional epithelium suggests an anchoring function to both the internal and the external basal lamina. J Dent Res 71:1503–1508

    CAS  PubMed  Google Scholar 

  45. Del Castillo LF, Schlegel Gómez R, Pelka M, Hornstein OP, Johannessen AC, von den Driesch P (1996) Immunohistochemical localization of very late activation integrins in healthy and diseased human gingiva. J Periodontal Res 31:36–42

    CAS  PubMed  Google Scholar 

  46. Thorup AK, Dabelsteen E, Schou S, Gil SG, Carter WG, Reibel J (1997) Differential expression of integrins and laminin-5 in normal oral epithelia. APMIS 105:519–530

    CAS  PubMed  Google Scholar 

  47. Gurses N, Thorup AK, Reibel J, Carter WG, Holmstrup P (1999) Expression of VLA-integrins and their related basement membrane ligands in gingiva from patients of various periodontitis categories. J Clin Periodontol 26:217–224

    CAS  PubMed  Google Scholar 

  48. Aumailley M, El Khal A, Knöss N, Tunggal L (2003) Laminin 5 processing and its integration into the ECM. Matrix Biol 22:49–54

    CAS  PubMed  Google Scholar 

  49. Litjens SH, de Pereda JM, Sonnenberg A (2006) Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 16:376–383

    CAS  PubMed  Google Scholar 

  50. Wilhelmsen K, Litjens SH, Kuikman I, Margadant C, van Rheenen J, Sonnenberg A (2007) Serine phosphorylation of the integrin β4 subunit is necessary for epidermal growth factor receptor induced hemidesmosome disruption. Mol Biol Cell 18:3512–3522

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Fujita T, Hayashida K, Shiba H, Kishimoto A, Matsuda S, Takeda K, Kawaguchi H, Kurihara H (2010) The expressions of claudin-1 and E-cadherin in junctional epithelium. J Periodontal Res 45:579–582

    CAS  PubMed  Google Scholar 

  52. Ivanov DB, Philippova MP, Tkachuk VA (2001) Structure and functions of classical cadherins. Biochemistry (Moscow) 66:1174–1186

    CAS  Google Scholar 

  53. Ye P, Chapple CC, Kumar RK, Hunter N (2000) Expression patterns of E-cadherin, involucrin, and connexin gap junction proteins in the lining epithelia of inflamed gingiva. J Pathol 192:58–66

    CAS  PubMed  Google Scholar 

  54. Heymann R, Wroblewski J, Terling C, Midtvedt T, Öbrink B (2001) The characteristic cellular organization and CEACAM1 expression in the junctional epithelium of rats and mice are genetically programmed and not influenced by the bacterial microflora. J Periodontol 72:454–460

    CAS  PubMed  Google Scholar 

  55. Odin P, Asplund M, Busch C, Öbrink B (1988) Immunohistochemical localization of cell CAM105 in rat tissues: appearance in epithelia, platelets, and granulocytes. J Histochem Cytochem 36:729–739

    CAS  PubMed  Google Scholar 

  56. Öbrink B (1997) CEA adhesion molecules: multifunctional proteins with signal-regulatory properties. Curr Opin Cell Biol 9:616–626

    PubMed  Google Scholar 

  57. Hauck CR, Meyer TF, Lang F, Gulbins E (1998) CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase- and Rac1-dependent signalling pathway. EMBO J 17:443–454

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kammerer R, Hahn S, Singer BB, Luo JS, von Kleist S (1998) Biliary glycoprotein (CD66a), a cell adhesion molecule of the immunoglobulin superfamily, on human lymphocytes: structure, expression and involvement in T cell activation. Eur J Immunol 28:3664–3674

    CAS  PubMed  Google Scholar 

  59. Singer BB, Scheffrahn I, Öbrink B (2000) The tumor growth-inhibiting cell adhesion molecule CEACAM1 (C-CAM) is differently expressed in proliferating and quiescent epithelial cells and regulates cell proliferation. Cancer Res 60:1236–1244

    CAS  PubMed  Google Scholar 

  60. Crawford JM, Hopp B (1990) Junctional epithelium expresses the intercellular adhesion molecule ICAM-1. J Periodontal Res 25:254–256

    CAS  PubMed  Google Scholar 

  61. Crawford JM (1992) Distribution of ICAM-1, LFA-3 and HLA-DR in healthy and diseased gingival tissues. J Periodontal Res 27:291–298

    CAS  PubMed  Google Scholar 

  62. Gao Z, Mackenzie IC (1992) Patterns of phenotypic expression of human junctional, gingival and reduced enamel epithelia in vivo and in vitro. Epithelial Cell Biol 1:156–167

    CAS  PubMed  Google Scholar 

  63. Tonetti MS (1997) Molecular factors associated with compartmentalization of gingival immune responses and transepithelial neutrophil migration. J Periodontal Res 32:104–109

    CAS  PubMed  Google Scholar 

  64. Tonetti MS, Imboden MA, Lang NP (1998) Neutrophil migration into the gingival sulcus is associated with transepithelial gradients of interleukin-8 and ICAM-1. J Periodontol 69:1139–1147

    CAS  PubMed  Google Scholar 

  65. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    CAS  PubMed  Google Scholar 

  66. Fujita T, Firth JD, Kittaka M, Ekuni D, Kurihara H, Putnins EE (2012) Loss of claudin-1 in lipopolysaccharide-treated periodontal epithelium. J Periodontal Res 47:222–227

    CAS  PubMed  Google Scholar 

  67. Tonetti MS, Gerber L, Lang NP (1994) Vascular adhesion molecules and initial development of inflammation in clinically healthy human keratinized mucosa around teeth and osseointegrated implants. J Periodontal Res 29:386–392

    CAS  PubMed  Google Scholar 

  68. Miyauchi M, Sato S, Kitagawa S, Hiraoka M, Kudo Y, Ogawa I, Zhao M, Takata T (2001) Cytokine expression in rat molar gingival periodontal tissues after topical application of lipopolysaccharide. Histochem Cell Biol 116:57–62

    CAS  PubMed  Google Scholar 

  69. Ekuni D, Firth JD, Nayer T, Tomofuji T, Sanbe T, Irie K, Yamamoto T, Oka T, Liu Z, Vielkind J, Putnins EE (2009) Lipopolysaccharide-induced epithelial monoamine oxidase mediates alveolar bone loss in a rat chronic wound model. Am J Pathol 175:1398–1409

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Werner S (1998) Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev 9:153–165

    CAS  PubMed  Google Scholar 

  71. Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, Cheon G, Taylor WG, Fortney E, Sakata H, Finch PW et al (1995) Keratinocyte growth factor. Cell Biol Int 19:399–411

    CAS  PubMed  Google Scholar 

  72. Igarashi M, Finch PW, Aaronson SA (1998) Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J Biol Chem 273:13230–13235

    CAS  PubMed  Google Scholar 

  73. Miki T, Fleming TP, Bottaro DP, Rubin JS, Ron D, Aaronson SA (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72–75

    CAS  PubMed  Google Scholar 

  74. Bottaro DP, Rubin JS, Ron D, Finch PW, Florio C, Aaronson SA (1990) Characterization of the receptor for keratinocyte growth factor. Evidence for multiple fibroblast growth factor receptors. J Biol Chem 265:12767–12770

    CAS  PubMed  Google Scholar 

  75. Sanaie AR, Firth JD, Uitto VJ, Putnins EE (2002) Keratinocyte growth factor (KGF)-1 and -2 protein and gene expression in human gingival fibroblasts. J Periodontal Res 37:66–74

    CAS  Google Scholar 

  76. Bajaj-Elliott M, Breese E, Poulsom R, Fairclough PD, MacDonald TT (1997) Keratinocyte growth factor in inflammatory bowel disease. Increased mRNA transcripts in ulcerative colitis compared with Crohn’s disease in biopsies and isolated mucosal myofibroblasts. Am J Pathol 151:1469–1476

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Finch PW, Cheng AL (1999) Analysis of the cellular basis of keratinocyte growth factor overexpression in inflammatory bowel disease. Gut 45:848–855

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Finch PW, Murphy F, Cardinale I, Krueger JG (1997) Altered expression of keratinocyte growth factor and its receptor in psoriasis. Am J Pathol 151:1619–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Finch PW, Pricolo V, Wu A, Finkelstein SD (1996) Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease. Gastroenterology 110:441–451

    CAS  PubMed  Google Scholar 

  80. Brauchle M, Madlener M, Wagner AD, Angermeyer K, Lauer U, Hofschneider PH, Gregor M, Werner S (1996) Keratinocyte growth factor is highly overexpressed in inflammatory bowel disease. Am J Pathol 149:521–529

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Guo L, Yu QC, Fuchs E (1993) Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J 12:973–986

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci U S A 89:6896–6900

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Putnins EE, Firth JD, Lohachitranont A, Uitto VJ, Larjava H (1999) Keratinocyte growth factor (KGF) promotes keratinocyte cell attachment and migration on collagen and fibronectin. Cell Adhes Commun 7:211–221

    CAS  PubMed  Google Scholar 

  84. Putnins EE, Firth JD, Uitto VJ (1996) Stimulation of collagenase (matrix metalloproteinase-1) synthesis in histiotypic epithelial cell culture by heparin is enhanced by keratinocyte growth factor. Matrix Biol 15:21–29

    CAS  PubMed  Google Scholar 

  85. Uitto VJ, Airola K, Vaalamo M, Johansson N, Putnins EE, Firth JD, Salonen J, López-Otín C, Saarialho-Kere U, Kähäri VM (1998) Collagenase-3 (matrix metalloproteinase-13) expression is induced in oral mucosal epithelium during chronic inflammation. Am J Pathol 152:1489–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA (1989) Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A 86:802–806

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yamasaki M, Miyake A, Tagashira S, Itoh N (1996) Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J Biol Chem 271:15918–15921

    CAS  PubMed  Google Scholar 

  88. Gao Z, Flaitz CM, Mackenzie IC (1996) Expression of keratinocyte growth factor in periapical lesions. J Dent Res 75:1658–1663

    CAS  PubMed  Google Scholar 

  89. Grøn B, Stoltze K, Andersson A, Dabelsteen E (2002) Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes. APMIS 110:892–898

    PubMed  Google Scholar 

  90. Ohshima M, Sakai A, Sawamoto Y, Seki K, Ito K, Otsuka K (2002) Hepatocyte growth factor (HGF) system in gingiva: HGF activator expression by gingival epithelial cells. J Oral Sci 44:129–134

    CAS  PubMed  Google Scholar 

  91. McKeown ST, Hyland PL, Locke M, Mackenzie IC, Irwin CR (2003) Keratinocyte growth factor and scatter factor expression by regionally defined oral fibroblasts. Eur J Oral Sci 111:42–50

    CAS  PubMed  Google Scholar 

  92. Dabelsteen S, Wandall HH, Gron B, Dabelsteen E (1997) Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts. Eur J Oral Sci 105:593–598

    CAS  PubMed  Google Scholar 

  93. Mackenzie IC, Gao Z (2001) Keratinocyte growth factor expression in human gingival fibroblasts and stimulation of in vitro gene expression by retinoic acid. J Periodontol 72:445–453

    CAS  PubMed  Google Scholar 

  94. Putnins EE, Sanaie AR, Wu Q, Firth JD (2002) Induction of keratinocyte growth factor 1 expression by lipopolysaccharide is regulated by CD-14 and toll-like receptors 2 and 4. Infect Immun 70:6541–6548

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Ekuni D, Firth JD, Putnins EE (2006) Regulation of epithelial cell growth factor receptor protein and gene expression using a rat periodontitis model. J Periodontal Res 41:340–349

    CAS  PubMed  Google Scholar 

  96. Nordlund L, Hormia M, Saxén L, Thesleff I (1991) Immunohistochemical localization of epidermal growth factor receptors in human gingival epithelia. J Periodontal Res 26:333–338

    CAS  PubMed  Google Scholar 

  97. Tajima Y, Yokose S, Kashimata M, Hiramatsu M, Minami N, Utsumi N (1992) Epidermal growth factor expression in junctional epithelium of rat gingiva. J Periodontal Res 27:299–300

    CAS  PubMed  Google Scholar 

  98. Schmid J, Cohen RL, Chambers DA (1991) Plasminogen activator in human periodontal health and disease. Arch Oral Biol 36:245–250

    CAS  PubMed  Google Scholar 

  99. Lindberg P, Baker MS, Kinnby B (2001) The localization of the relaxed form of plasminogen activator inhibitor type 2 in human gingival tissues. Histochem Cell Biol 116:447–452

    CAS  PubMed  Google Scholar 

  100. Lindberg P, Kinnby B, Lecander I, Lang NP, Matsson L (2001) Increasing expression of tissue plasminogen activator and plasminogen activator inhibitor type 2 in dog gingival tissues with progressive inflammation. Arch Oral Biol 46:23–31

    CAS  PubMed  Google Scholar 

  101. Uitto VJ, Salonen JI, Firth JD, Jousimies-Somer H, Saarialho-Kere U (2002) Matrilysin (matrix metalloproteinase-7) expression in human junctional epithelium. J Dent Res 81:241–246

    CAS  PubMed  Google Scholar 

  102. Dale BA (2002) Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000 30:70–78

    PubMed  Google Scholar 

  103. Pöllänen MT, Laine MA, Ihalin R, Uitto VJ (2012) Host-bacteria crosstalk at the dentogingival junction. Int J Dent 2012:821383

    PubMed Central  PubMed  Google Scholar 

  104. Schluger S, Youdelis RA, Page RC (eds) (1977) Periodontal disease. Lea and Febiger, Philadelphia

    Google Scholar 

  105. Takata T, Donath K (1988) The mechanism of pocket formation. A light microscopic study on undecalcified human material. J Periodontol 59:215–221

    CAS  PubMed  Google Scholar 

  106. Hillmann G, Vipismakul V, Donath K (1990) Die Entstehung plaquebedingter Gingivataschen im Tiermodell. Eine histologische Studie an unentkalkten Dünnschliffen. Dtsch Zahnarztl Z 45:264–266 (German)

    CAS  PubMed  Google Scholar 

  107. Ekuni D, Yamamoto T, Yamanaka R, Tachibana K, Watanabe T (2003) Proteases augment the effects of lipopolysaccharide in rat gingiva. J Periodontal Res 38:591–596

    CAS  PubMed  Google Scholar 

  108. Klinkhamer JM (1968) Quantitative evaluation of gingivitis and periodontal disease. I. The orogranulocytic migratory rate. Periodontics 6:207–211

    CAS  PubMed  Google Scholar 

  109. Klinkhamer JM, Zimmerman S (1969) The function and reliability of the orogranulocytic migratory rate as a measure of oral health. J Dent Res 48:709–715

    CAS  PubMed  Google Scholar 

  110. Attström R (1970) Presence of leukocytes in crevices of healthy and chronically inflamed gingivae. J Periodontal Res 5:42–47

    PubMed  Google Scholar 

  111. Attström R, Egelberg J (1970) Emigration of blood neutrophils and monocytes into the gingival crevices. J Periodontal Res 5:48–55

    PubMed  Google Scholar 

  112. Kowashi Y, Jaccard F, Cimasoni G (1980) Sulcular polymorphonuclear leucocytes and gingival exudate during experimental gingivitis in man. J Periodontal Res 15:151–158

    CAS  PubMed  Google Scholar 

  113. Firth JD, Ekuni D, Irie K, Tomofuji T, Morita M, Putnins EE (2013) Lipopolysaccharide induces a stromal-epithelial signalling axis in a rat model of chronic periodontitis. J Clin Periodontol 40:8–17

    CAS  PubMed  Google Scholar 

  114. Schroeder HE, Attström R (1980) Pocket formation: an hypothesis. In: Lehner T, Cimasoni G (eds) The borderland between caries and periodontal disease II. Academic/Grune & Stratton, London, pp 99–123

    Google Scholar 

  115. Lamont RJ, Oda D, Persson RE, Persson GR (1992) Interaction of Porphyromonas gingivalis with gingival epithelial cells maintained in culture. Oral Microbiol Immunol 7:364–367

    CAS  PubMed  Google Scholar 

  116. Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A (1995) Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63:3878–3885

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Sandros J, Papapanou PN, Nannmark U, Dahlén G (1994) Porphyromonas gingivalis invades human pocket epithelium in vitro. J Periodontal Res 29:62–69

    CAS  PubMed  Google Scholar 

  118. Madianos PN, Papapanou PN, Nannmark U, Dahlén G, Sandros J (1996) Porphyromonas gingivalis FDC381 multiplies and persists within human oral epithelial cells in vitro. Infect Immun 64:660–664

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Meyer DH, Mintz KP, Fives-Taylor PM (1997) Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. Crit Rev Oral Biol Med 8:389–409

    CAS  PubMed  Google Scholar 

  120. Njoroge T, Genco RJ, Sojar HT, Hamada N, Genco CA (1997) A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun 65:1980–1984

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Deshpande RG, Khan M, Genco CA (1998) Invasion strategies of the oral pathogen Porphyromonas gingivalis: implications for cardiovascular disease. Invasion Metastasis 18:57–69

    PubMed  Google Scholar 

  122. Huard-Delcourt A, Menard C, Du L, Pellen-Mussi P, Tricot-Doleux S, Bonnaure-Mallet M (1998) Adherence of Porphyromonas gingivalis to epithelial cells: analysis by flow cytometry. Eur J Oral Sci 106:938–944

    CAS  PubMed  Google Scholar 

  123. Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C (1999) Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 20:136–167

    CAS  PubMed  Google Scholar 

  125. Forng RY, Champagne C, Simpson W, Genco CA (2000) Environmental cues and gene expression in Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Dis 6:351–365

    CAS  PubMed  Google Scholar 

  126. Quirynen M, Papaioannou W, van Steenbergen TJ, Dierickx K, Cassiman JJ, van Steenberghe D (2001) Adhesion of Porphyromonas gingivalis strains to cultured epithelial cells from patients with a history of chronic adult periodontitis or from patients less susceptible to periodontitis. J Periodontol 72:626–633

    CAS  PubMed  Google Scholar 

  127. Carro OM, Evans SAS, Leone CW (1997) Effect of inflammation on the proliferation of human gingival epithelial cells in vitro. J Periodontol 68:1070–1075

    CAS  PubMed  Google Scholar 

  128. Vitkov L, Krautgartner WD, Hannig M (2005) Bacterial internalization in periodontitis. Oral Microbiol Immunol 20:317–321

    CAS  PubMed  Google Scholar 

  129. Andrian E, Grenier D, Rouabhia M (2004) In vitro models of tissue penetration and destruction by Porphyromonas gingivalis. Infect Immun 72:4689–4698

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wang PL, Shinohara M, Murakawa N, Endo M, Sakata S, Okamura M, Ohura K (1999) Effect of cysteine protease of Porphyromonas gingivalis on adhesion molecules in gingival epithelial cells. Jpn J Pharmacol 80:75–79

    CAS  PubMed  Google Scholar 

  131. Katz J, Sambandam V, Wu JH, Michalek SM, Balkovetz DF (2000) Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect Immun 68:1441–1449

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Katz J, Yang QB, Zhang P, Potempa J, Travis J, Michalek SM, Balkovetz DF (2002) Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun 70:2512–2518

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Chen T, Nakayama K, Belliveau L, Duncan MJ (2001) Porphyromonas gingivalis gingipains and adhesion to epithelial cells. Infect Immun 69:3048–3056

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Hintermann E, Haake SK, Christen U, Sharabi A, Quaranta V (2002) Discrete proteolysis of focal contact and adherens junction components in Porphyromonas gingivalis-infected oral keratinocytes: a strategy for cell adhesion and migration disabling. Infect Immun 70:5846–5856

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Tada H, Sugawara S, Nemoto E, Imamura T, Potempa J, Travis J, Shimauchi H, Takada H (2003) Proteolysis of ICAM-1 on human oral epithelial cells by gingipains. J Dent Res 82:796–801

    CAS  PubMed  Google Scholar 

  136. Takata T, Miyauchi M, Ogawa I, Ito H, Kobayashi J, Nikai H (1997) Reactive change in proliferative activity of the junctional epithelium after topical application of lipopolysaccharide. J Periodontol 68:531–535

    CAS  PubMed  Google Scholar 

  137. Ekuni D, Tomofuji T, Yamanaka R, Tachibana K, Yamamoto T, Watanabe T (2005) Initial apical migration of junctional epithelium in rats following application of lipopolysaccharide and proteases. J Periodontol 76:43–48

    PubMed  Google Scholar 

  138. Yoon SO, Park SJ, Yoon SY, Yun CH, Chung AS (2002) Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. J Biol Chem 277:30271–30282

    CAS  PubMed  Google Scholar 

  139. Zaragoza C, Lopez-Rivera E, Garcia-Rama C, Saura M, Martinez-Ruiz A, Lizarbe TR, Martin-de-Lara F, Lamas S (2006) Cbfa-1 mediates nitric oxide regulation of MMP-13 in osteoblasts. J Cell Sci 119:1896–1902

    CAS  PubMed  Google Scholar 

  140. Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    CAS  PubMed  Google Scholar 

  141. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Thannickal VJ, Day RM, Klinz SG, Bastien MC, Larios JM, Fanburg BL (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-β1. FASEB J 14:1741–1748

    CAS  PubMed  Google Scholar 

  143. Klann E, Thiels E (1999) Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog Neuropsychopharmacol Biol Psychiatry 23:359–376

    CAS  PubMed  Google Scholar 

  144. Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, Thannickal VJ (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–856

    CAS  PubMed  Google Scholar 

  145. Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    CAS  PubMed  Google Scholar 

  146. Ha E-M, Oh C-T, Ryu J-H, Bae Y-S, Kang S-W, Jang I-H, Brey PT, Lee WJ (2005) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125–132

    CAS  PubMed  Google Scholar 

  147. Ding S-Z, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, Dirden-Kramer B, Boldogh I, Ernst PB, Crowe SE (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75:4030–4039

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55:2111–2115

    CAS  PubMed  Google Scholar 

  149. Handa O, Naito Y, Yoshikawa T (2007) CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol 73:1697–1702

    CAS  PubMed  Google Scholar 

  150. Akalin FA, Baltacioğlu E, Alver A, Karabulut E (2007) Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clin Periodontol 34:558–565

    CAS  PubMed  Google Scholar 

  151. Chapple IL, Brock GR, Milward MR, Ling N, Matthews JB (2007) Compromised GCF total antioxidant capacity in periodontitis: cause or effect? J Clin Periodontol 34:103–110

    CAS  PubMed  Google Scholar 

  152. Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, Hung CC (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40:378–384

    CAS  PubMed  Google Scholar 

  153. Ekuni D, Tomofuji T, Tamaki N, Sanbe T, Azuma T, Yamanaka R, Yamamoto T, Watanabe T (2008) Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Arch Oral Biol 53:324–329

    CAS  PubMed  Google Scholar 

  154. Pan YM, Firth JD, Salonen JI, Uitto VJ (1995) Multilayer culture of periodontal ligament epithelial cells: a model for junctional epithelium. J Periodontal Res 30:97–107

    CAS  PubMed  Google Scholar 

  155. Firth JD, Uitto VJ, Putnins EE (2008) Mechanical induction of an epithelial cell chymase associated with wound edge migration. J Biol Chem 283:34983–34993

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Li C (2008) Automating dChip: toward reproducible sharing of microarray data analysis. BMC Bioinformatics 9:231

    PubMed Central  PubMed  Google Scholar 

  157. Wesseling S, Joles JA, van Goor H, Bluyssen HA, Kemmeren P, Holstege FC, Koomans HA, Braam B (2007) Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-depleted rats. Physiol Genomics 28:158–167

    CAS  PubMed  Google Scholar 

  158. Kim YH, Lim DS, Lee JH, Shim WJ, Ro YM, Park GH, Becker KG, Cho-Chung YS, Kim MK (2003) Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 35:336–349

    CAS  PubMed  Google Scholar 

  159. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4:R7

    PubMed Central  PubMed  Google Scholar 

  160. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31:19–20

    CAS  PubMed  Google Scholar 

  161. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Miyazaki Y, Shinomura Y, Tsutsui S, Yasunaga Y, Zushi S, Higashiyama S, Taniguchi N, Matsuzawa Y (1996) Oxidative stress increases gene expression of heparin-binding EGF-like growth factor and amphiregulin in cultured rat gastric epithelial cells. Biochem Biophys Res Commun 226:542–546

    CAS  PubMed  Google Scholar 

  163. Edmondson DE, Mattevi A, Binda C, Li M, Hubálek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993

    CAS  PubMed  Google Scholar 

  164. Weyler W, Hsu YP, Breakefield XO (1990) Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 47:391–417

    CAS  PubMed  Google Scholar 

  165. Binda C, Milczek EM, Bonivento D, Wang J, Mattevi A, Edmondson DE (2011) Lights and shadows on monoamine oxidase inhibition in neuroprotective pharmacological therapies. Curr Top Med Chem 11:2788–2796

    CAS  PubMed  Google Scholar 

  166. Werner P, Cohen G (1993) Glutathione disulfide (GSSG) as a marker of oxidative injury to brain mitochondria. Ann N Y Acad Sci 679:364–369

    CAS  PubMed  Google Scholar 

  167. Magyar K, Szende B (2004) (−)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 25:233–242

    CAS  PubMed  Google Scholar 

  168. Tipton KF, Boyce S, O’Sullivan J, Davey GP, Healy J (2004) Monoamine oxidases: certainties and uncertainties. Curr Med Chem 11:1965–1982

    CAS  PubMed  Google Scholar 

  169. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297

    CAS  PubMed  Google Scholar 

  171. Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J Biol Chem 270:27961–27968

    CAS  PubMed  Google Scholar 

  172. Lieb J (1983) Remission of rheumatoid arthritis and other disorders of immunity in patients taking monoamine oxidase inhibitors. Int J Immunopharmacol 5:353–357

    CAS  PubMed  Google Scholar 

  173. Kast RE (1998) Crohn’s disease remission with phenelzine treatment. Gastroenterology 115:1034–1035

    CAS  PubMed  Google Scholar 

  174. Chaaya R, Alfarano C, Guilbeau-Frugier C, Coatrieux C, Kesteman AS, Parini A, Fares N, Gue M, Schanstra JP, Bascands JL (2011) Pargyline reduces renal damage associated with ischaemia-reperfusion and cyclosporin. Nephrol Dial Transplant 26:489–498

    CAS  PubMed  Google Scholar 

  175. Nagatsu T, Sawada M (2006) Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells. J Neural Transm Suppl 71:53–65

    CAS  PubMed  Google Scholar 

  176. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Noriko Takeuchi (Okayama University, Okayama, Japan) for help creating the figures and to Ms. Ingrid Ellis for her editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Putnins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ekuni, D., Firth, J.D., Putnins, E.E. (2014). Expression of Reactive Oxygen Species in Junctional and Pocket Epithelium. In: Ekuni, D., Battino, M., Tomofuji, T., Putnins, E. (eds) Studies on Periodontal Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9557-4_4

Download citation

Publish with us

Policies and ethics