Role of HMGB1 in Periodontal Disease

Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

High-mobility group box-1 (HMGB1) protein is highly expressed in the nucleus, where it regulates chromatin structure and transcription. HMGB1 is also released to the extracellular fluid upon tissue injury or inflammation, and triggers tissue repair and defense programs. The presence of high levels of HMGB1 has been reported in the gingival crevicular fluid (GCF) from periodontal patients and some studies have suggested a role of HMGB1 in inflammatory periodontal tissues. In our previous study, immunohistochemical staining of gingiva showed that HMGB1 is dislocated from the nucleus to the cytoplasm of inflamed epithelial cells in pocket epithelium, whereas it is mainly present in the nucleus in the gingival epithelium. Proliferation of bacteria within the periodontal pocket is closely involved in the exacerbation of periodontal disease. Therefore, the periodontal pocket represents a unique pathological setting for a source of HMGB1 by bacterial insult.

Keywords

Arthritis Ischemia Leukemia Recombination Cysteine 

Abbreviations

BA

Butyric acid

Ca9-22

Gingival epithelial cells

CHX

Cycloheximide

CP

Chronic periodontitis

Cys

Cysteine

GCF

Gingival crevicular fluid

HDAC

Histone deacetylase

HMGB1

High-mobility group box-1

IL

Interleukin

LPS

Lipopolysaccharide

PDL

Periodontal ligament

RAGE

Receptor for advanced glycation end products

ROS

Reactive oxygen species

TNF-α

Tumor necrosis factor

References

  1. 1.
    Bianchi ME, Beltrame M (1998) Flexing DNA: HMG-box proteins and their partners. Am J Hum Genet 63:1573–1577PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bonaldi T, Langst G, Strohner R, Becker PB, Bianchi ME (2002) The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J 21:6865–6873PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bianchi ME, Manfredi AA (2007) High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220:35–46PubMedCrossRefGoogle Scholar
  4. 4.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342PubMedCrossRefGoogle Scholar
  5. 5.
    Orlova VV, Choi EY, Xie C et al (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195PubMedCrossRefGoogle Scholar
  7. 7.
    Wang H, Bloom O, Zhang M et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251PubMedCrossRefGoogle Scholar
  8. 8.
    Pullerits R, Jonsson IM, Verdrengh M et al (2003) High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis Rheum 48:1693–1700PubMedCrossRefGoogle Scholar
  9. 9.
    Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165:2950–2954PubMedCrossRefGoogle Scholar
  10. 10.
    Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gardella S, Andrei C, Ferrera D et al (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3:995–1001PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282:17845–17854PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325PubMedCrossRefGoogle Scholar
  14. 14.
    Liu A, Fang H, Dirsch O, Jin H, Dahmen U (2012) Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion. PLoS One. doi: 10.1371/journal.pone.0035379 Google Scholar
  15. 15.
    Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, Sears JE (2006) Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res 312:3526–3538PubMedCrossRefGoogle Scholar
  16. 16.
    Kazama H, Ricci JE, Herndon JM et al (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tang D, Kang R, Zeh HJ III (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal 14:1315–1335PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Venereau E, Casalgrandi M, Schiraldi M et al (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209:1519–1528PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tang D, Kang R, Cheh CW et al (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Moore WE, Moore LV (1994) The bacteria of periodontal diseases. Periodontol 2000 5:66–77PubMedCrossRefGoogle Scholar
  21. 21.
    Page RC (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 26:230–242PubMedCrossRefGoogle Scholar
  22. 22.
    Morimoto Y, Kawahara KI, Tancharoen S et al (2008) Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1. J Periodontal Res 43:76–83PubMedCrossRefGoogle Scholar
  23. 23.
    Luo L, Xie P, Gong P et al (2011) Expression of HMGB1 and HMGN2 in gingival tissues, GCF and PICF of periodontitis patients and peri-implantitis. Arch Oral Biol 56:1106–1111PubMedCrossRefGoogle Scholar
  24. 24.
    Feghali K, Iwasaki K, Tanaka K et al (2009) Human gingival fibroblasts release high-mobility group box-1 protein through active and passive pathways. Oral Microbiol Immunol 24:292–298PubMedCrossRefGoogle Scholar
  25. 25.
    Ito Y, Bhawal UK, Sasahira T et al (2012) Involvement of HMGB1 and RAGE in IL-1β-induced gingival inflammation. Arch Oral Biol 57:73–80PubMedCrossRefGoogle Scholar
  26. 26.
    Wolf M, Lossdörfer S, Abuduwali N, Jäger A (2012) Potential role of high mobility group box protein 1 and intermittent PTH (1–34) in periodontal tissue repair following orthodontic tooth movement in rats. Clin Oral Investig. doi: 10.1007/s00784-012-0777-2 Google Scholar
  27. 27.
    Hasegawa N (2008) Effect of high mobility group box 1 (HMGB1) in cultured human periodontal ligament cells. Kokubyo Gakkai Zasshi 75:155–161PubMedCrossRefGoogle Scholar
  28. 28.
    Kim YS, Lee YM, Park JS, Lee SK, Kim EC (2010) SIRT1 modulates high-mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells. J Cell Biochem 111:1310–1320PubMedCrossRefGoogle Scholar
  29. 29.
    Ebe N, Hara-Yokoyama M, Iwasaki K et al (2011) Pocket epithelium in the pathological setting for HMGB1 release. J Dent Res 90:235–240PubMedCrossRefGoogle Scholar
  30. 30.
    Kurita-Ochiai T, Fukushima K, Ochiai K (1995) Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J Dent Res 74:1367–1373PubMedCrossRefGoogle Scholar
  31. 31.
    Margolis HC, Duckworth JH, Moreno EC (1988) Composition and buffer capacity of pooled starved plaque fluid from caries-free and caries-susceptible individuals. J Dent Res 67:1476–1482PubMedCrossRefGoogle Scholar
  32. 32.
    Qiqiang L, Huanxin M, Xuejun G (2012) Longitudinal study of volatile fatty acids in the gingival crevicular fluid of patients with periodontitis before and after nonsurgical therapy. J Periodontal Res 47:740–749PubMedCrossRefGoogle Scholar
  33. 33.
    Chang MC, Tsai YL, Chen YW et al (2013) Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts. J Periodontal Res 48:66–73PubMedCrossRefGoogle Scholar
  34. 34.
    Kurita-Ochiai T, Amano S, Fukushima K, Ochiai K (2003) Cellular events involved in butyric acid-induced T cell apoptosis. J Immunol 171:3576–3584PubMedCrossRefGoogle Scholar
  35. 35.
    Takigawa S, Sugano N, Nishihara R et al (2008) The effect of butyric acid on adhesion molecule expression by human gingival epithelial cells. J Periodontal Res 43:386–390PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Inorganic Materials, Institute of Biomaterial & BioengineeringTokyo Medical and Dental University (TMDU)Chiyoda-kuJapan
  2. 2.Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)Bunkyo-kuJapan
  3. 3.Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan

Personalised recommendations