Neuroblastoma: Functional Imaging

  • Susan E. Sharp
  • Michael J. Gelfand
  • Barry L. Shulkin


Neuroblastoma is a malignant tumor derived from primitive neural crest cells of the sympathetic nervous system. Primary tumors can arise anywhere along the sympathetic chain, most commonly occurring in the adrenal gland and retroperitoneum. More than half of patients will have metastatic disease at diagnosis, most commonly involving bone marrow and cortical bone. Neuroblastoma prognosis is widely variable, ranging from spontaneous regression to fatal disease in spite of intensive multimodality therapy. Multiple clinical and imaging tests are used to guide therapy and predict outcomes. Anatomic imaging modalities, such as CT and MRI, are used to evaluate the primary tumor and involved lymph nodes. Functional imaging agents, such as 123I-MIBG, 99mTc-MDP, and 18F-FDG, are used for whole-body evaluation of disease sites. Iodine-123-MIBG is the first-line functional imaging modality used in neuroblastoma. Technetium-99m-MDP bone scans have traditionally been used to assess cortical bone metastases. Use of 18F-FDG PET and PET/CT in neuroblastoma is increasing, especially in tumors with little or no MIBG avidity. This chapter will discuss the performance and interpretation of 123I-MIBG, 99mTc-MDP, and 18F-FDG scans in neuroblastoma patients.


MIBG Uptake MIBG Imaging Neuroblastoma Patient Bone Marrow Metastasis International Neuroblastoma Staging System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lonergan GJ, Schwab CM, Suarez ES, et al. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22(4):911–34.PubMedGoogle Scholar
  2. 2.
    Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36(4):277–85.PubMedGoogle Scholar
  3. 3.
    DuBois SG, Kalika Y, Lukens JN, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.PubMedGoogle Scholar
  4. 4.
    Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77.PubMedGoogle Scholar
  5. 5.
    Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG task force report. J Clin Oncol. 2009;27(2):298–303.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Brisse HJ, McCarville MB, Granata C, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261(1):243–57.PubMedGoogle Scholar
  7. 7.
    Gunther P, Holland-Cunz S, Schupp CJ, et al. Significance of image-defined risk factors for surgical complications in patients with abdominal neuroblastoma. Eur J Pediatr Surg. 2011;21(5):314–7.PubMedGoogle Scholar
  8. 8.
    Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27(2):289–97.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Moroz V, Machin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47(4):561–71.PubMedGoogle Scholar
  10. 10.
    London WB, Castleberry RP, Matthay KK, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol. 2005;23(27):6459–65.PubMedGoogle Scholar
  11. 11.
    George RE, London WB, Cohn SL, et al. Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol. 2005;23(27):6466–73.PubMedGoogle Scholar
  12. 12.
    Schmidt ML, Lal A, Seeger RC, et al. Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children’s Cancer Group study. J Clin Oncol. 2005;23(27):6474–80.PubMedGoogle Scholar
  13. 13.
    Maris JM, Hogarty MD, Bagatell R, et al. Neuroblastoma. Lancet. 2007;369(9579):2106–20.PubMedGoogle Scholar
  14. 14.
    Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.PubMedGoogle Scholar
  15. 15.
    Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24(1):65–86.PubMedGoogle Scholar
  16. 16.
    Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362(23):2202–11.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Strother DR, London WB, Schmidt ML, et al. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children’s Oncology Group study P9641. J Clin Oncol. 2012;30(15):1842–8.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Hero B, Simon T, Spitz R, et al. Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J Clin Oncol. 2008;26(9):1504–10.PubMedGoogle Scholar
  19. 19.
    Simon T, Spitz R, Faldum A, et al. New definition of low-risk neuroblastoma using stage, age, and 1p and MYCN status. J Pediatr Hematol Oncol. 2004;26(12):791–6.PubMedGoogle Scholar
  20. 20.
    Perez CA, Matthay KK, Atkinson JB, et al. Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a Children’s Cancer Group study. J Clin Oncol. 2000;18(1):18–26.PubMedGoogle Scholar
  21. 21.
    Nickerson HJ, Matthay KK, Seeger RC, et al. Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: a Children’s Cancer Group study. J Clin Oncol. 2000;18(3):477–86.PubMedGoogle Scholar
  22. 22.
    Matthay KK, Perez C, Seeger RC, et al. Successful treatment of stage III neuroblastoma based on prospective biologic staging: a Children’s Cancer Group study. J Clin Oncol. 1998;16(4):1256–64.PubMedGoogle Scholar
  23. 23.
    Schmidt ML, Lukens JN, Seeger RC, et al. Biologic factors determine prognosis in infants with stage IV neuroblastoma: a prospective Children’s Cancer Group study. J Clin Oncol. 2000;18(6):1260–8.PubMedGoogle Scholar
  24. 24.
    Baker DL, Schmidt ML, Cohn SL, et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N Engl J Med. 2010;363(14):1313–23.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Matthay KK, Villablanca JG, Seeger RC, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341(16):1165–73.PubMedGoogle Scholar
  26. 26.
    Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group study. J Clin Oncol. 2009;27(7):1007–13.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45(7):1172–88.PubMedGoogle Scholar
  28. 28.
    Kushner BH, Yeung HW, Larson SM, et al. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;19(14):3397–405.PubMedGoogle Scholar
  29. 29.
    Stark DD, Moss AA, Brasch RC, et al. Neuroblastoma: diagnostic imaging and staging. Radiology. 1983;148(1):101–5.PubMedGoogle Scholar
  30. 30.
    Stark DD, Brasch RC, Moss AA, et al. Recurrent neuroblastoma: the role of CT and alternate imaging tests. Radiology. 1983;148(1):107–12.PubMedGoogle Scholar
  31. 31.
    Golding SJ, McElwain TJ, Husband JE. The role of computed tomography in the management of children with advanced neuroblastoma. Br J Radiol. 1984;57(680):661–6.PubMedGoogle Scholar
  32. 32.
    Siegel MJ, Ishwaran H, Fletcher BD, et al. Staging of neuroblastoma at imaging: report of the Radiology Diagnostic Oncology Group. Radiology. 2002;223(1):168–75.PubMedGoogle Scholar
  33. 33.
    Hugosson C, Nyman R, Jorulf H, et al. Imaging of abdominal neuroblastoma in children. Acta Radiol. 1999;40(5):534–42.PubMedGoogle Scholar
  34. 34.
    Sofka CM, Semelka RC, Kelekis NL, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging. 1999;17(2):193–8.PubMedGoogle Scholar
  35. 35.
    Slovis TL, Meza MP, Cushing B, et al. Thoracic neuroblastoma: what is the best imaging modality for evaluating extent of disease? Pediatr Radiol. 1997;27(3):273–5.PubMedGoogle Scholar
  36. 36.
    Ilias I, Shulkin B, Pacak K. New functional imaging modalities for chromaffin tumors, neuroblastomas and ganglioneuromas. Trends Endocrinol Metab. 2005;16(2):66–72.PubMedGoogle Scholar
  37. 37.
    Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–47.PubMedGoogle Scholar
  38. 38.
    Chen CC, Carrasquillo JA. Molecular imaging of adrenal neoplasms. J Surg Oncol. 2012;106(5):532–42.PubMedGoogle Scholar
  39. 39.
    Franzius C, Hermann K, Weckesser M, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47(10):1635–42.PubMedGoogle Scholar
  40. 40.
    Shulkin BL, Wieland DM, Baro ME, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37(1):16–21.PubMedGoogle Scholar
  41. 41.
    Shulkin BL, Wieland DM, Castle VP, et al. Carbon-11 epinephrine PET imaging of neuroblastoma. J Nucl Med. 1999;40s:129 [abstract].Google Scholar
  42. 42.
    Lopci E, Piccardo A, Nanni C, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37(4):e73–8.PubMedGoogle Scholar
  43. 43.
    Piccardo A, Lopci E, Conte M, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39(1):57–71.PubMedGoogle Scholar
  44. 44.
    Tzen K, Wang L, Lu M. Characterization of neuroblastic tumors using F-18 DOPA PET. J Nucl Med. 2007;48s:117 [abstract].Google Scholar
  45. 45.
    Valentiner U, Haane C, Peldschus K, et al. [18F]FDG and [18F]FLT PET-CT and MR imaging of human neuroblastoma in a SCID mouse xenograft model. Anticancer Res. 2008;28(5A):2561–8.PubMedGoogle Scholar
  46. 46.
    Krieger-Hinck N, Gustke H, Valentiner U, et al. Visualisation of neuroblastoma growth in a Scid mouse model using [18F]FDG and [18F]FLT-PET. Anticancer Res. 2006;26(5A):3467–72.PubMedGoogle Scholar
  47. 47.
    Kroiss A, Putzer D, Uprimny C, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38(5):865–73.PubMedGoogle Scholar
  48. 48.
    Vaidyanathan G, Zhao XG, Strickland DK, et al. No-carrier-added iodine-131-FIBG: evaluation of an MIBG analog. J Nucl Med. 1997;38(2):330–4.PubMedGoogle Scholar
  49. 49.
    Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med. 1995;36(4):644–50.PubMedGoogle Scholar
  50. 50.
    Vaidyanathan G, Affleck DJ, Zalutsky MR. (4-[18F]fluoro-3-iodobenzyl)guanidine, a potential MIBG analogue for positron emission tomography. J Med Chem. 1994;37(21):3655–62.PubMedGoogle Scholar
  51. 51.
    Leung A, Shapiro B, Hattner R, et al. Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med. 1997;38(9):1352–7.PubMedGoogle Scholar
  52. 52.
    Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med. 1999;43(3):217–23.PubMedGoogle Scholar
  53. 53.
    Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol. 1987;15(4):170–7.PubMedGoogle Scholar
  54. 54.
    Smets LA, Loesberg C, Janssen M, et al. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res. 1989;49(11):2941–4.PubMedGoogle Scholar
  55. 55.
    Smets LA, Janssen M, Metwally E, et al. Extragranular storage of the neuron blocking agent meta-iodobenzylguanidine (MIBG) in human neuroblastoma cells. Biochem Pharmacol. 1990;39(12):1959–64.PubMedGoogle Scholar
  56. 56.
    Treuner J, Feine U, Niethammer D, et al. Scintigraphic imaging of neuroblastoma with 131I-iodobenzylguanidine. Lancet. 1984;1(8372):333–4.PubMedGoogle Scholar
  57. 57.
    Geatti O, Shapiro B, Sisson JC, et al. Iodine-131 metaiodobenzylguanidine scintigraphy for the location of neuroblastoma: preliminary experience in ten cases. J Nucl Med. 1985;26(7):736–42.PubMedGoogle Scholar
  58. 58.
    Gelfand MJ. I-123-MIBG and I-131-MIBG imaging in children with neuroblastoma. J Nucl Med. 1996;37s:35 [abstract].Google Scholar
  59. 59.
    Wood DE, Gilday DL, Kellan J. Stable iodine requirements for thyroid gland blockage of iodinated radiopharmaceuticals. J Can Assoc Radiol. 1974;25(4):295–6.PubMedGoogle Scholar
  60. 60.
    Bombardieri E, Giammarile F, Aktolun C, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2436–46.PubMedGoogle Scholar
  61. 61.
    Olivier P, Colarinha P, Feltich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30(5):B45–50.PubMedGoogle Scholar
  62. 62.
    Matthay KK, Shulkin B, Ladenstein R, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102(9):1319–26.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52(2):318–22.PubMedGoogle Scholar
  64. 64.
    Vik TA, Pfluger T, Kadota R, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results for a prospective multicenter trial. Pediatr Blood Cancer. 2009;52(7):784–90.PubMedGoogle Scholar
  65. 65.
    Gelfand MJ, Elgazzar AH, Kriss VM, et al. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35(11):1753–7.PubMedGoogle Scholar
  66. 66.
    Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37(9):1464–8.PubMedGoogle Scholar
  67. 67.
    Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. Am J Roentgenol. 2008;190(4):1085–90.Google Scholar
  68. 68.
    Bar-Sever Z, Steinmetz A, Ash S, et al. The role of MIBG SPECT/CT in children with neuroblastoma. J Nucl Med. 2008;49s:84 [abstract].Google Scholar
  69. 69.
    Sharp SE, Gelfand MJ. Utility of SPECT/CT imaging in neuroblastoma. J Nucl Med. 2009;50s:52 [abstract].Google Scholar
  70. 70.
    Fukuoka M, Taki J, Mochizuki T, et al. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/paraganglioma and neuroblastoma. Clin Nucl Med. 2011;36(1):1–7.PubMedGoogle Scholar
  71. 71.
    Snay ER, Treves ST, Fahey FH. Improved quality of pediatric 123I-MIBG images with medium-energy collimators. J Nucl Med Technol. 2011;39(2):100–4.PubMedGoogle Scholar
  72. 72.
    Englaro DD, Gelfand MJ, Harris RE, et al. I-131 MIBG imaging after bone marrow transplantation for neuroblastoma. Radiology. 1992;182(2):515–20.PubMedGoogle Scholar
  73. 73.
    Tanabe M, Takahashi H, Ohnuma N, et al. Evaluation of bone marrow metastasis of neuroblastoma and changes after chemotherapy by MRI. Med Pediatr Oncol. 1993;21(1):54–9.PubMedGoogle Scholar
  74. 74.
    Tanabe M, Ohnuma N, Iwai J, et al. Bone marrow metastasis of neuroblastoma analyzed by MRI and its influence on prognosis. Med Pediatr Oncol. 1995;24(5):292–9.PubMedGoogle Scholar
  75. 75.
    Lebtahi N, Gudinchet F, Nenadov-Beck M, et al. Evaluating bone marrow metastasis of neuroblastoma with iodine-123-MIBG scintigraphy and MRI. J Nucl Med. 1997;38(9):1389–92.PubMedGoogle Scholar
  76. 76.
    Sharp SE, Shulkin BL, Gelfand MJ, et al. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43.
  77. 77.
    Taggart DR, Han MM, Quach A, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27(32):5343–9.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Kushner BH, Kramer K, Modak S, et al. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol. 2009;27(7):1041–6.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Suc A, Lumbroso J, Rubie H, et al. Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer. 1996;77(4):805–11.PubMedGoogle Scholar
  80. 80.
    Ladenstein R, Philip T, Lasset C, et al. Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplant Solid Tumor Registry. J Clin Oncol. 1998;16(3):953–65.PubMedGoogle Scholar
  81. 81.
    Perel Y, Conway J, Kletzel M, et al. Clinical impact and prognostic value of metaiodobenzylguanidine imaging in children with metastatic neuroblastoma. J Pediatr Hematol Oncol. 1999;21(1):13–8.PubMedGoogle Scholar
  82. 82.
    Schmidt M, Simon T, Hero B, et al. The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer. 2008;44(11):1552–8.PubMedGoogle Scholar
  83. 83.
    Ady N, Zucker JM, Asselain B, et al. A new 123I-MIBG whole body scan scoring method – application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer. 1995;31A(2):256–61.PubMedGoogle Scholar
  84. 84.
    Frappaz D, Bonneu A, Chauvot P, et al. Metaiodobenzylguanidine assessment of metastatic neuroblastoma: observer dependency and chemosensitivity evaluation. The SFOP Group. Med Pediatr Oncol. 2000;34(4):237–41.PubMedGoogle Scholar
  85. 85.
    Hero B, Hunneman DH, Gahr M, et al. Evaluation of catecholamine metabolites, mIBG scan, and bone marrow cytology as response markers in stage 4 neuroblastoma. Med Pediatr Oncol. 2001;36(1):220–3.PubMedGoogle Scholar
  86. 86.
    Matthay KK, Edeline V, Lumbroso J, et al. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol. 2003;21(13):2486–91.PubMedGoogle Scholar
  87. 87.
    Katzenstein HM, Cohn SL, Shore RM, et al. Scintigraphic response by 123I-metaiodobenzylguanidine scan correlates with event-free survival in high-risk neuroblastoma. J Clin Oncol. 2004;22(19):3909–15.PubMedGoogle Scholar
  88. 88.
    Messina JA, Cheng SC, Franc BL, et al. Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatr Blood Cancer. 2006;47(7):865–74.PubMedGoogle Scholar
  89. 89.
    Lewington V, Bar Sever Z, Lynch T, et al. Development of a new, semiquantitative I-123 mIBG reporting method in high risk neuroblastoma. Eur J Nucl Med Mol Imaging. 2009;36:334 [abstract].Google Scholar
  90. 90.
    Paltiel HJ, Gelfand MJ, Elgazzar AH, et al. Neural crest tumors: I-123 MIBG imaging in children. Radiology. 1994;190(1):117–21.PubMedGoogle Scholar
  91. 91.
    Bonnin F, Lumbroso J, Tenenbaum F, et al. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35(5):803–10.PubMedGoogle Scholar
  92. 92.
    Acharya J, Chang PT, Gerard P. Abnormal MIBG uptake in a neuroblastoma patient with right upper lobe atelectasis. Pediatr Radiol. 2012;42(10):1259–62.PubMedGoogle Scholar
  93. 93.
    Schindler T, Yu C, Rossleigh M, et al. False-positive MIBG uptake in pneumonia in a patient with stage IV neuroblastoma. Clin Nucl Med. 2010;35(9):743–5.PubMedGoogle Scholar
  94. 94.
    Okuyama C, Sakane N, Yoshida T, et al. (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med. 2002;43(9):1234–40.PubMedGoogle Scholar
  95. 95.
    Okuyama C, Ushijima Y, Kubota T, et al. 123I-metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med. 2003;44(9):1421–5.PubMedGoogle Scholar
  96. 96.
    Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. Am J Roentgenol. 2003;181(4):1115–24.Google Scholar
  97. 97.
    Melzer HI, Coppenrath E, Schmid I, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38(9):1648–58.PubMedGoogle Scholar
  98. 98.
    Jacobsson H, Hellstrom PM, Kogner P, et al. Different concentrations of I-123 MIBG and In-111 pentetreotide in the two main liver lobes in children: persisting regional functional differences after birth? Clin Nucl Med. 2007;32(1):24–8.PubMedGoogle Scholar
  99. 99.
    Heyman S, Evans AE, D’Angio GJ. I-131 metaiodobenzylguanidine: diagnostic use in neuroblastoma patients in relapse. Med Pediatr Oncol. 1988;16(5):337–40.PubMedGoogle Scholar
  100. 100.
    Schmiegelow K, Simes MA, Agertoft L, et al. Radio-iodobenzylguanidine scintigraphy of neuroblastoma: conflicting results, when compared with standard investigations. Med Pediatr Oncol. 1989;17(2):127–30.PubMedGoogle Scholar
  101. 101.
    Biasotti S, Garaventa A, Villavecchia GP, et al. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35(2):153–5.PubMedGoogle Scholar
  102. 102.
    Kushner BH, Yeh SD, Kramer K, et al. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to dose-intensive induction chemotherapy. J Clin Oncol. 2003;21(6):1082–6.PubMedGoogle Scholar
  103. 103.
    Hickeson MP, Charron M, Maris JM, et al. Biodistribution of post-therapeutic versus diagnostic (131)I-MIBG scans in children with neuroblastoma. Pediatr Blood Cancer. 2004;42(3):268–74.PubMedGoogle Scholar
  104. 104.
    Parisi MT, Matthay KK, Huberty JP, et al. Neuroblastoma: dose-related sensitivity of MIBG scanning in detection. Radiology. 1992;184(2):463–7.PubMedGoogle Scholar
  105. 105.
    Gordon I, Peters AM, Gutman A, et al. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31(2):129–34.PubMedGoogle Scholar
  106. 106.
    Turba E, Fagioli G, Mancini AF, et al. Evaluation of stage 4 neuroblastoma patients by means of MIBG and 99mTc-MDP scintigraphy. J Nucl Biol Med. 1993;37(3):107–14.PubMedGoogle Scholar
  107. 107.
    Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med. 1992;33(10):1735–40.PubMedGoogle Scholar
  108. 108.
    Hadj-Djilani NL, Lebtahi NE, Delaloye AB, et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22(4):322–9.PubMedGoogle Scholar
  109. 109.
    Zukotynski KA, Fahey FH, Laffin S, et al. Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging. 2009;36(4):602–6.PubMedGoogle Scholar
  110. 110.
    Gelfand MJ, O’Hara SM, Curtwright LA, et al. Premedication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35(10):984–90.PubMedGoogle Scholar
  111. 111.
    Parysow O, Mollerach AM, Jager V, et al. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med. 2007;32(5):351–7.PubMedGoogle Scholar
  112. 112.
    Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34(7):1018–22.PubMedGoogle Scholar
  113. 113.
    Tatsumi M, Engles JM, Ishimori T, et al. Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med. 2004;45(7):1189–93.PubMedGoogle Scholar
  114. 114.
    Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.PubMedGoogle Scholar
  115. 115.
    Shulkin BL, Hutchinson RJ, Castle VP, et al. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199(3):743–50.PubMedGoogle Scholar
  116. 116.
    Papathanasiou ND, Gaze MN, Sullivan K, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52(4):519–25.PubMedGoogle Scholar
  117. 117.
    Colavolpe C, Guedj E, Cammilleri S, et al. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2008;51(6):828–31.PubMedGoogle Scholar
  118. 118.
    McDowell H, Losty P, Barnes N, et al. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2009;52(4):552 [letter].Google Scholar
  119. 119.
    Goodin GS, Shulkin BL, Kaufman RA, et al. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease. Am J Roentgenol. 2006;187(4):1124–8.Google Scholar
  120. 120.
    Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29(5):1467–86.PubMedGoogle Scholar
  121. 121.
    DuBois SG and Matthay KK. 131I-Metaiodobenzyl-guanidine therapy in children with advanced neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:53–65.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Susan E. Sharp
    • 1
  • Michael J. Gelfand
    • 2
  • Barry L. Shulkin
    • 3
  1. 1.Department of Radiology, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Section of Nuclear Medicine, Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Division of Nuclear Medicine, Department of Radiological SciencesSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations