Advertisement

Modulating Autophagy and the “Reverse Warburg Effect”

  • Maria I. Vaccaro
  • Claudio D. Gonzalez
  • Silvia Alvarez
  • Alejandro Ropolo
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Autophagy is a highly regulated cellular pathway for degrading long-lived proteins and is the only known pathway for clearing cytoplasmic organelles. Autophagy is a major contributor to maintain cellular homeostasis and metabolism. The quality control of mitochondria is essential to maintain cell energy and this process appears to be achieved via autophagy. Warburg hypothesized that cancer growth is caused by the fact that tumor cells mainly generate energy by the non-oxidative breakdown of glucose. This cellular behavior relies on a respiratory impairment, characterized by a mitochondrial dysfunction, which results in a switch to glycolysis. Moreover, epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. Here, we introduce the autophagy process, its regulation, the selective pathways, and its role in cancer cell metabolism. We define the Warburg effect and the “reverse” hypothesis and we discuss the potential value of modulating autophagy. The association of the Warburg effect in tumor and stromal cells to cancer-related autophagy is of significant relevance in experimental therapeutics.

Keywords

Autophagy Cancer Warburg effect Mitochondria Caveolin Mitophagy Cancer cell metabolism Metformin Rapamycin Chloroquine mTOR PI3K VMP1 BECN1 ROS RAGE 

Notes

Acknowledgments

Our work is supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the University of Buenos Aires.

References

  1. 1.
    Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77PubMedGoogle Scholar
  2. 2.
    Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedGoogle Scholar
  3. 3.
    Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32PubMedCentralPubMedGoogle Scholar
  4. 4.
    Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedGoogle Scholar
  5. 5.
    Qu X, Zou Z, Sun Q et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946PubMedGoogle Scholar
  6. 6.
    Pattingre S, Levine B (2006) Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 66:2885–2888PubMedGoogle Scholar
  7. 7.
    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995PubMedCentralPubMedGoogle Scholar
  8. 8.
    Klionsky DJ (2005) Autophagy. Curr Biol 15:282–283Google Scholar
  9. 9.
    Klionsky DL, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCentralPubMedGoogle Scholar
  10. 10.
    Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12:1535–1541PubMedGoogle Scholar
  11. 11.
    Klionsky DJ, Cregg JM, Dunn WA et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedGoogle Scholar
  12. 12.
    Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676PubMedGoogle Scholar
  13. 13.
    Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedGoogle Scholar
  14. 14.
    Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG. Nat Cell Biol 8:688–699PubMedGoogle Scholar
  15. 15.
    Kihara A, Noda T, Ishihara N et al (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces. J Cell Biol 152:519–530PubMedGoogle Scholar
  16. 16.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedCentralPubMedGoogle Scholar
  17. 17.
    Vaccaro MI, Ropolo A, Grasso D et al (2008) A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy 4:388–390PubMedGoogle Scholar
  18. 18.
    Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776PubMedGoogle Scholar
  19. 19.
    Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131PubMedCentralPubMedGoogle Scholar
  20. 20.
    Høyer-Hansen M, Jäättelä M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3:381–383PubMedGoogle Scholar
  21. 21.
    Zheng M, Wang YH, Wu XN et al (2011) Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 13:263–272PubMedCentralPubMedGoogle Scholar
  22. 22.
    Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Ann Rev Nutr 7:539–564Google Scholar
  23. 23.
    Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243PubMedGoogle Scholar
  24. 24.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedGoogle Scholar
  25. 25.
    Sancak Y, Bar-Peled L, Zoncu R et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303PubMedCentralPubMedGoogle Scholar
  26. 26.
    Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226PubMedCentralPubMedGoogle Scholar
  27. 27.
    Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606PubMedCentralPubMedGoogle Scholar
  28. 28.
    Botti J, Djavaheri-Mergny M, Pilatte Y et al (2006) Autophagy signaling and the cogwheels of cancer. Autophagy 2:67–73PubMedGoogle Scholar
  29. 29.
    Green DR, Wang R (2010) Calcium and energy: making the cake and eating it too? Cell 142:200–202PubMedGoogle Scholar
  30. 30.
    Tracy K, Dibling BC, Spike BT et al (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27:6229–6242PubMedCentralPubMedGoogle Scholar
  31. 31.
    Sherr CJ (2006) Autophagy by ARF: a short story. Mol Cell 22:436–437PubMedGoogle Scholar
  32. 32.
    Crighton D, Wilkinson S, Ryan KM (2007) DRAM links autophagy to p53 and programmed cell death. Autophagy 3:72–74PubMedGoogle Scholar
  33. 33.
    Xia HG, Zhang L, Chen G et al (2010) Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6:61–66PubMedCentralPubMedGoogle Scholar
  34. 34.
    Mills KR, Reginato M, Debnath J et al (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 101:3438–3443PubMedGoogle Scholar
  35. 35.
    Pyo JO, Jang MH, Kwon YK et al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729PubMedGoogle Scholar
  36. 36.
    Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2:132–134PubMedGoogle Scholar
  37. 37.
    Sarkar S, Perlstein EO, Imarisio S et al (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338PubMedCentralPubMedGoogle Scholar
  38. 38.
    Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132PubMedGoogle Scholar
  39. 39.
    Ropolo A, Grasso D, Pardo R et al (2007) The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 282:37124–37133PubMedGoogle Scholar
  40. 40.
    Grasso D, Ropolo A, Lo Ré A et al (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 286:8308–8324PubMedGoogle Scholar
  41. 41.
    Lo RAE, Fernández-Barrena MG, Almada LL et al (2012) Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J Biol Chem 287:25325–25334Google Scholar
  42. 42.
    Molejon MI, Ropolo A, ReAL et al (2013) The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep 3:1055PubMedCentralPubMedGoogle Scholar
  43. 43.
    Tian Y, Li Z, Hu W et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:1042–1055PubMedGoogle Scholar
  44. 44.
    Calvo-Garrido J, Escalante R (2010) Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 6:100–109PubMedGoogle Scholar
  45. 45.
    Pardo R, Lo RA, Archange C et al (2010) Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells. Pancreatology 10:19–26PubMedGoogle Scholar
  46. 46.
    Mariño G, López-Otín C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454PubMedGoogle Scholar
  47. 47.
    Kuma A, Mizushima N, Ishihara N et al (2002) Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619–18625PubMedGoogle Scholar
  48. 48.
    Mizushima N, Noda T, Yoshimori T et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398PubMedGoogle Scholar
  49. 49.
    Kim J, Dalton VM, Eggerton KP et al (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10:1337–1351PubMedCentralPubMedGoogle Scholar
  50. 50.
    Yuan W, Stromhaug PE, Dunn WA Jr (1999) Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 10:1353–1366Google Scholar
  51. 51.
    Tanida I, Tanida-Miyake E, Ueno T et al (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701–1706PubMedGoogle Scholar
  52. 52.
    Shintani T, Mizushima N, Ogawa Y et al (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241PubMedGoogle Scholar
  53. 53.
    Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896PubMedGoogle Scholar
  54. 54.
    Ichimura Y, Kirisako T, Takao T et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492PubMedGoogle Scholar
  55. 55.
    Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584:1302–1312PubMedGoogle Scholar
  56. 56.
    Mari M, Griffith J, Rieter E et al (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005–1022PubMedGoogle Scholar
  57. 57.
    Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437PubMedGoogle Scholar
  58. 58.
    Hailey DW, Rambold AS, Satpute-Krishnan P et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667PubMedCentralPubMedGoogle Scholar
  59. 59.
    Ravikumar B, Moreau K, Jahreiss L et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12:747–757PubMedCentralPubMedGoogle Scholar
  60. 60.
    Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831–835PubMedGoogle Scholar
  61. 61.
    Di Bartolomeo SC, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168PubMedGoogle Scholar
  62. 62.
    Liang C, Lee JS, Inn KS et al (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787PubMedCentralPubMedGoogle Scholar
  63. 63.
    Matsunaga K, Saitoh T, Tabata K et al (2009) Two Beclin 1-binding proteins, Atg14 L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396PubMedGoogle Scholar
  64. 64.
    Molejon MI, Ropolo A, Vaccaro MI (2013) VMP1 is a new player in the regulation of the autophagy-specific phosphatidylinositol 3-kinase complex activation. Autophagy 2013 Apr 4;9(6) [Epub ahead of print]Google Scholar
  65. 65.
    Reggiori F, Komatsu M, Finley K et al (2012) Selective types of autophagy. Int J Cell Biol 2012:156272Google Scholar
  66. 66.
    Schwarten M, Mohrluder J, Ma P et al (2009) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5:690–698PubMedGoogle Scholar
  67. 67.
    Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51PubMedCentralPubMedGoogle Scholar
  68. 68.
    Schweers RL, Zhang J, Randall MS et al (2007) Nix is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505PubMedGoogle Scholar
  69. 69.
    Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235PubMedCentralPubMedGoogle Scholar
  70. 70.
    Mortensen M, Ferguson DJ, Edelmann M et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107:832–837PubMedGoogle Scholar
  71. 71.
    Stephenson LM, Miller BC, Ng A et al (2009) Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T-lymphocytes. Autophagy 5:625–635PubMedGoogle Scholar
  72. 72.
    Hubbard VM, Valdor R, Patel B et al (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185:7349–7357PubMedCentralPubMedGoogle Scholar
  73. 73.
    Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T-lymphocytes by autophagy. J Immunol 186:5313–5322PubMedGoogle Scholar
  74. 74.
    Abeliovich A (2010) Parkinson’s disease: mitochondrial damage control. Nature 463:744–745PubMedGoogle Scholar
  75. 75.
    Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology 8 Article ID e1000298Google Scholar
  76. 76.
    Jin SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942PubMedGoogle Scholar
  77. 77.
    Deas E, Plun-Favreau H, Gandhi S et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20:867–879PubMedGoogle Scholar
  78. 78.
    Shi G, Lee JR, Grimes DA et al (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet 20:1966–1974PubMedGoogle Scholar
  79. 79.
    Okatsu K, Saisho K, Shimanuki M et al (2010) P62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15:887–900PubMedCentralPubMedGoogle Scholar
  80. 80.
    Narendra DP, Kane LA, Hauser DN et al (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106PubMedGoogle Scholar
  81. 81.
    Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698PubMedGoogle Scholar
  82. 82.
    Mathew R, White E (2011) Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 21:113–119PubMedCentralPubMedGoogle Scholar
  83. 83.
    Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCentralPubMedGoogle Scholar
  84. 84.
    Høyer-Hansen M, Jäättelä M (2008) Autophagy: an emerging target for cancer therapy. Autophagy 4:574–580PubMedGoogle Scholar
  85. 85.
    Toth S, Nagy K, Palfia Z, Rez G (2002) Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas: Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation. Cell Tissue Res 309:409416Google Scholar
  86. 86.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J Clin Invest 112:1809–1820Google Scholar
  87. 87.
    Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747PubMedGoogle Scholar
  88. 88.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967PubMedCentralPubMedGoogle Scholar
  89. 89.
    Buchler P, Reber HA, Lavey RS et al (2004) Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 120:295–303PubMedGoogle Scholar
  90. 90.
    Izuishi K, Kato K, Ogura T et al (2000) Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 60:6201–6207PubMedGoogle Scholar
  91. 91.
    Esumi H, Izuishi K, Kato K et al (2002) Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5’-AMP-activated protein kinase-dependent manner. J Biol Chem 277:32791–32798PubMedGoogle Scholar
  92. 92.
    Fujii S, Mitsunaga S, Yamazaki M et al (2008) Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 99:1813–1819PubMedGoogle Scholar
  93. 93.
    DeNardo DG, Johansson M, Coussens LM (2008) Inflaming gastrointestinal oncogenic programming. Cancer Cell 14:7–9PubMedGoogle Scholar
  94. 94.
    Abe R, Yamagishi S (2008) AGE-RAGE system and carcinogenesis. Curr Pharm Des 14:940–945PubMedGoogle Scholar
  95. 95.
    Arumugam T, Simeone DM, Van GK, Logsdon CD (2005) S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11:5356–5364PubMedGoogle Scholar
  96. 96.
    Kang R, Tang D, Schapiro NE et al (2009) The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 16:1–11Google Scholar
  97. 97.
    Kewley RJ, Whitelaw ML, Chapman-Smith A (2004) The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36:189–204PubMedGoogle Scholar
  98. 98.
    Azad MB, Chen Y, Henson ES et al (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195–204PubMedCentralPubMedGoogle Scholar
  99. 99.
    Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16:515–523PubMedCentralPubMedGoogle Scholar
  100. 100.
    Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64:5338–5346PubMedGoogle Scholar
  101. 101.
    Mahon PC, Baril P, Bhakta V et al (2007) S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 67:6786–6795PubMedGoogle Scholar
  102. 102.
    Abe T, Toyota M, Suzuki H et al (2005) Upregulation of BNIP3 by 5-aza-2’-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40:504–510PubMedGoogle Scholar
  103. 103.
    Guan J, Stromhaug PE, George MD et al (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12:3821–3838PubMedCentralPubMedGoogle Scholar
  104. 104.
    Proikas-Cezanne T, Waddell S, Gaugel A et al (2004) WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314–9325PubMedGoogle Scholar
  105. 105.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedGoogle Scholar
  106. 106.
    Nelson D, Cox D (2008) Lehninger principles of biochemistry (chapter 14). WH Freeman and Co, New YorkGoogle Scholar
  107. 107.
    Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–229PubMedGoogle Scholar
  108. 108.
    Gogvadze V, Zhivo tovskyB, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Asp Med 31:60–74Google Scholar
  109. 109.
    Vincent M (2011) Cancer: a de-repression of a default survival program common to all cells? Bioessays 34:72–82PubMedGoogle Scholar
  110. 110.
    Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 23(4):352–361PubMedGoogle Scholar
  111. 111.
    Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120PubMedGoogle Scholar
  112. 112.
    Nilsson LM, Forshell TZ, Rimpi S et al (2012) Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet 8:e1002573. doi: 10.1371Google Scholar
  113. 113.
    Vincent AS, Phan TT, Mukhopadhyay A et al (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128:702–709PubMedGoogle Scholar
  114. 114.
    Pavlides S, Whitaker-Menezes D, Castello-Cross R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001PubMedGoogle Scholar
  115. 115.
    Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D et al (2010) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implication for breast cancer and DICS therapy with autophagy inhibitors. Cell Cycle 9:2423–2433PubMedGoogle Scholar
  116. 116.
    Lisanti MP, Martinez-Outschoorn UE, Chiavarina B et al (2010) Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging roles for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 10:537–542PubMedGoogle Scholar
  117. 117.
    Bonuccelli G, Tsirigos A, Whitaker-Menezes D et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514PubMedGoogle Scholar
  118. 118.
    Witkiewicz AK, Dasgrupta A, Sotgia F et al (2009) An absence of stromal Caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breasts cancers. Am J Pathol 174:2023–2034PubMedGoogle Scholar
  119. 119.
    Goligorsky MS, Li H, Brodski S et al (2001) Relationship between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol 283:1–10Google Scholar
  120. 120.
    Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269PubMedGoogle Scholar
  121. 121.
    Boveris A, Costa LE, Poderoso JJ et al (2000) Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann N Y Acad Sci 899:121–135PubMedGoogle Scholar
  122. 122.
    Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J 441:523–540PubMedCentralPubMedGoogle Scholar
  123. 123.
    Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295PubMedGoogle Scholar
  124. 124.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605PubMedGoogle Scholar
  125. 125.
    Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz Clerch L, Massaro, DJ (eds) Oxygen, Gene Expression and Cellular Function. Marcel Dekker, New York, pp. 1–25Google Scholar
  126. 126.
    Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady-state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 9:1008–1018Google Scholar
  127. 127.
    Antunes F, Cadenas E, Brunk U (2001) Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 356:549–555PubMedGoogle Scholar
  128. 128.
    Ermak G, Sojitra S, Yin F et al (2012) Chronic expression of RCAN1-1 L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. J Biol Chem 287:14088–14098PubMedGoogle Scholar
  129. 129.
    BelAiba RS, Djordjevic T, Bonello S et al (2004) Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 385:249–257PubMedGoogle Scholar
  130. 130.
    Yao J, Hamilton RT, Cadenas E (2010) Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim. Biophys Acta 1800: 1121–1126Google Scholar
  131. 131.
    Tzagaloff A (1982) Mitochondria. Plenum Press, LondonGoogle Scholar
  132. 132.
    Vonck J, Schafer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793:117–124PubMedGoogle Scholar
  133. 133.
    Nisoli E, Clementi E, Moncada S et al (2004) Mitochondrial biogenesis as a signaling framework. Biochem Pharmacol 67:1–15PubMedGoogle Scholar
  134. 134.
    Scarpulla RC (2008) Transcriptional paradigs in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638PubMedGoogle Scholar
  135. 135.
    Sotgia F, Whitaker-Menezes D, Martinez-Outschoon UE et al (2012) Mitochondrial metabolism in cancer metastasis. Cell Cycle 11:1445–1454PubMedGoogle Scholar
  136. 136.
    Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227:325–335PubMedGoogle Scholar
  137. 137.
    Smith-Vikos T (2012) A report of the James Watson lecture at Yale University. Yale J Biol Med 85:417–419PubMedCentralPubMedGoogle Scholar
  138. 138.
    Del Barco SVazquez-Martin, Cufi S et al (2011) Metformin: multi-faceted protection against cancer. Oncotarget 2:896–917PubMedGoogle Scholar
  139. 139.
    Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE et al (2011) Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther 12:1101–1113PubMedGoogle Scholar
  140. 140.
    Vazquez-Martin A, Corominas-Faja B, Cufi S et al (2013) The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle 12:207–218PubMedGoogle Scholar
  141. 141.
    Amaravadi RK, Lippincott-Schwartz J, Yin XM et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666PubMedCentralPubMedGoogle Scholar
  142. 142.
    Mancias JD, Kimmelman AC (2011) Targeting autophagy addiction in cancer. Oncotarget 2:1302–1306PubMedGoogle Scholar
  143. 143.
    Ewald B, Sampath D, Plankett W (2008) Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 27:6522–6237PubMedGoogle Scholar
  144. 144.
    Jackson AS, Jain P, Watkins CR et al (2010) Efficacy and tolerability of limited field radiotherapy with concurrent capecitabine in local advanced pancreatic cancer. Clin Oncol (R Coll Radiol) 22:570–577Google Scholar
  145. 145.
    Vivanco I, Sawyers C (2002) The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2:489–501PubMedGoogle Scholar
  146. 146.
    Sheith R, Walsh N, Clynes M et al (2010) Challenges of drug resistance on the management of pancreatic cancer. Expert Rev Anticancer Ther 10:1647–1661Google Scholar
  147. 147.
    Conroy T, Desseigne F, Ychoy M et al (2010) Randomized phase III trial comparing FOLFIRINOZ (F: 5FU/leucovorine [LV], irinotecan [I] and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (MPA): prepanned interim analysis results of the PRODIGE 4/ACOORD 11 trial. J Clin Oncol 28 (May 20 supplement): 4010Google Scholar
  148. 148.
    Tung W, Wang Y, Cout PW et al (2011) Use of irinotecan for treatment of small cell carcinoma of prostate. Prostate 71:675–681PubMedGoogle Scholar
  149. 149.
    Ropolo A, Bagnes CI, Molejon M et al (2012) Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology 12:1–7PubMedGoogle Scholar
  150. 150.
    Hughson LR, Poon VI, Spowart JE et al (2012) Implications of therapy-induced selective autophagy on tumor metabolism and survival. Int J Cell Biol 2012:872091Google Scholar
  151. 151.
    Zhang L, Yu J, Pan H et al (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 104:19023–19028PubMedGoogle Scholar
  152. 152.
    Farkas T, Høyer-Hansen M, Jäättelä M (2009) Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 5:1018–1025PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maria I. Vaccaro
    • 1
    • 2
  • Claudio D. Gonzalez
    • 2
  • Silvia Alvarez
    • 2
  • Alejandro Ropolo
    • 2
  1. 1.CONICETBuenos AiresArgentina
  2. 2.Institute for Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations