Skip to main content

Glucose Metabolism and the Antioxidative Defense System in Cancer Cells: Options for the Application of ROS-based Anticancer Drugs

  • Chapter
  • First Online:
Tumor Metabolome Targeting and Drug Development

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1085 Accesses

Abstract

Cancer cell metabolic pathways (aerobic glycolysis, Warburg effect) may be used as targets for the development of new drugs with more specific therapeutic strategies. Reactive oxygen species (ROS) are often involved in these metabolic pathways. Their generation, as well as the defensive reactions against them, present attractive targets. In this chapter, the major aspects of aerobic glycolysis in cancer cells are summarized first, while presenting the principles of ROS biochemistry. ROS formation, and the defense mechanisms against them, are rather heterogeneous in various cancer cell types. The basic mechanisms, therefore, are described first in two well-defined non-malignant cell types, erythrocytes and neutrophils. This is followed by a description of the more complex situation in cancer cells, where the influence of anti-/pro-oxidative microenvironments on cellular proliferation and survival is discussed. In the second part, potential targets for ROS-based therapeutics are presented and the mechanisms of some of them (dichloroacetate, iron dependency, arsenic trioxide, and high-dose intravenous (i.v.) ascorbic acid) are described in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastasiou D, Poulogiannis G, Asara JM et al (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Mosc 70:200–214

    CAS  Google Scholar 

  3. Baader SL, Bruchelt G, Carmine TC et al (1994) Ascorbic-acid-mediated iron release from cellular ferritin and its relation to the formation of DNA strand breaks in neuroblastoma cells. J Cancer Res Clin Oncol 120:415–421

    CAS  PubMed  Google Scholar 

  4. Bauer DE, Hatzivassiliou G, Zhao F et al (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322

    CAS  PubMed  Google Scholar 

  5. Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 23:352–361

    CAS  PubMed  Google Scholar 

  6. Berardi MJ, Fantin VR (2011) Survival of the fittest: metabolic adaptations in cancer. Curr Opin Genet Dev 21:59–66

    CAS  PubMed  Google Scholar 

  7. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nature Rev Cancer 8:967–975

    CAS  Google Scholar 

  8. Biemond P, Swaak AJG, Van Eijk HG, Koster JF (1988) Superoxide dependent iron release from ferritin in inflammatory diseases. Free Rad Biol Med 4:185–198

    CAS  PubMed  Google Scholar 

  9. Bindoli A, Cavallini L, Rigobello MP et al (1988) Modification of the xanthine-converting enzyme of perfused rat heart during ischemia and oxidative stress. Free Rad Biol Med 4:163–167

    CAS  PubMed  Google Scholar 

  10. Block K, Gorin Y (2012) Aiding and abetting roles of NOX oxidases in cellular transformation. Nature Rev Cancer 12:627–637

    CAS  Google Scholar 

  11. Block KI, Koch AC, Mead MN et al (2007) Impact of antioxidant supplementation on chemotherapeutic efficacy: A systematic review of the evidence from randomized controlled trials. Cancer Treat Rev 33:407–418

    CAS  PubMed  Google Scholar 

  12. Bluemlein K, Grüning N-M, Feichtinger RG et al (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2:393–400

    PubMed  Google Scholar 

  13. Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    CAS  PubMed  Google Scholar 

  14. Cadet J, Douki T, Gasparutto D et al (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mut Res Fund Mol M 531:5–23

    CAS  Google Scholar 

  15. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nature Rev Cancer 11:85–95

    CAS  Google Scholar 

  16. Cameron E, Pauling L (1976) Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 73:3685–3689

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cameron E, Pauling L (1978) Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 75:4538–4542

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chandel NS, Maltepe E, Goldwasser E et al (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen Q, Espey MG, Krishna MC et al (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A 102:13604–13609

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen Q, Espey MG, Sun AY et al (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A 104:8749–8754

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen Q, Espey MG, Sun AY et al (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A 105:11105–11109

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen Z, Lu W, Garcia-Prieto C et al (2007) The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39:267–274

    CAS  PubMed  Google Scholar 

  23. Clément M-V, Ramalingam J, Long LH et al (2001) The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid Redox Sign 3:157–163

    Google Scholar 

  24. Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defense and redox signalling. Biochem J 425:313–325

    CAS  Google Scholar 

  25. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    CAS  PubMed  Google Scholar 

  26. Creagan ET, Moertel CG, OʼFallon JR, Schutt AJ et al (1979) Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med 301:687–690

    CAS  PubMed  Google Scholar 

  27. Dai J, Weinberg RS, Waxmann S et al (1999) Malignant Cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277

    CAS  PubMed  Google Scholar 

  28. Dang CV (2010) Rethinking the Warburg effect with myc micromanaging glutamine metabolism. Cancer Res 70:859–862

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Davies MJ (2005) The oxidative environment and protein damage. BBA - Proteins and Proteomics 1703:93–109

    CAS  PubMed  Google Scholar 

  30. Davison K, Mann KK, Miller WH Jr (2002) Arsenic trioxide: mechanisms of action. Semin Hematol 39:3–7

    CAS  PubMed  Google Scholar 

  31. DeBerardinis RJ, Cheng T (2010) Qʼs next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    CAS  PubMed Central  PubMed  Google Scholar 

  32. DeBerardinis RJ, Lum JJ, Hatzivassiliou G et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    CAS  PubMed  Google Scholar 

  33. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Rev Cancer 8:705–713

    CAS  Google Scholar 

  34. Deubzer B, Mayer F, Kuçi Z et al (2010) H2O2 -mediated cytotoxicity of pharmacologic ascorbate concentrations to neuroblastoma cells: potential role of lactate and ferritin. Cell Physiol Biochem 25:767–774

    CAS  PubMed  Google Scholar 

  35. Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33:542–564

    CAS  PubMed  Google Scholar 

  36. Eigenbrodt E, Glossmann H (1980) Glycolysis-one of the keys to cancer? Trends Pharmacol Sci 1:240–245

    CAS  Google Scholar 

  37. Esteban MA, Maxwell PH (2005) HIF, a missing link between metabolism and cancer. Nature Med 11:1047–1048

    CAS  PubMed  Google Scholar 

  38. Favaro E, Bensaad K, Chong MG et al (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 16:751–764

    CAS  PubMed  Google Scholar 

  39. Feichtinger RG, Zimmermann F, Mayr JA et al (2010) Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer 10:149

    PubMed Central  PubMed  Google Scholar 

  40. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    CAS  PubMed  Google Scholar 

  41. Fransen M, Nordgren M, Wang B et al (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. BBA - Molecular Basis of Disease 1822:1363–1373

    CAS  PubMed  Google Scholar 

  42. Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794

    CAS  PubMed  Google Scholar 

  43. Fruehauf JP, Zonis S, Al-Bassam M et al (1998) Melanin content and downregulation of glutathione S-transferase contribute to the action of l-buthionine-S-sulfoximine on human melanoma. Chem Biol Interact 111-112:277–305

    Google Scholar 

  44. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nature Rev Cancer 2:683–693

    CAS  Google Scholar 

  45. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET Literature. J Nucl Med 42:1–93

    Google Scholar 

  46. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nature Rev Cancer 4:891–899

    CAS  Google Scholar 

  47. Geiszt M, Leto TL (2004) The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279:51715–51718

    CAS  PubMed  Google Scholar 

  48. Gesundheit B, Malach L, Or R et al (2008) Neuroblastoma cell death is induced by inorganic arsenic trioxide (As2O3) and inhibited by a normal human bone marrow cell-derived factor. Cancer Microenviron 1:153–157

    PubMed Central  PubMed  Google Scholar 

  49. Goossens V, Grooten J, Vos KD et al (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A 92:8115–8119

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Grad JM, Bahlis NJ, Reis I et al (2001) Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98:805–813

    CAS  PubMed  Google Scholar 

  51. Griffith OW, Meister A (1985) Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci U S A 82:4668–4672

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Grüning N-M, Ralser M (2011) Cancer: sacrifice for survival. Nature 480:190–191

    PubMed  Google Scholar 

  53. Grüning N-M, Rinnerthaler M, Bluemlein K et al (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14:415–427

    PubMed Central  PubMed  Google Scholar 

  54. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    CAS  PubMed  Google Scholar 

  55. Hahn T, Or R, Segall H et al (1998) Human bone marrow-derived mitogenic stimulation selective for breast carcinoma and neuroblastoma cells. Int J Cancer 78:624–628

    CAS  PubMed  Google Scholar 

  56. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    CAS  PubMed  Google Scholar 

  57. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  58. Hann H-WL, Levy HM, Evans AE (1980) Serum ferritin as a guide to therapy in neuroblastoma. Cancer Res 40:1411–1413

    CAS  PubMed  Google Scholar 

  59. Heaney ML, Gardner JR, Karasavvas N et al (2008) Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res 68:8031–8038

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Heinzelmann S, Bauer G (2010) Multiple protective functions of catalase against intercellular apoptosis-inducing ROS signaling of human tumor cells. Biol Chem 391:675–693

    CAS  PubMed  Google Scholar 

  61. Hirschhaeuser F, Sattler UGA, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    CAS  PubMed  Google Scholar 

  62. Hu W, Zhang C, Wu R et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107:7455–7460

    CAS  PubMed  Google Scholar 

  63. Iancu TC, Shiloh H, Kedar A (1988) Neuroblastomas contain iron-rich ferritin. Cancer 61:2497–2502

    CAS  PubMed  Google Scholar 

  64. Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biol 13:310–316

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Jo S-H, Son M-K, Koh H-J et al (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+ -dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176

    CAS  PubMed  Google Scholar 

  66. Johnston RB (2001) Clinical aspects of chronic granulomatous disease. Curr Opin Hematol 8:17–22

    PubMed  Google Scholar 

  67. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    CAS  PubMed  Google Scholar 

  68. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    CAS  PubMed  Google Scholar 

  69. Kaelin W, Thompson CB (2010) Q & A: cancer: clues from cell metabolism. Nature 465:562–564

    CAS  PubMed  Google Scholar 

  70. Karasavvas N, Cárcamo JM, Stratis G et al (2005) Vitamin C protects HL60 and U266 cells from arsenic toxicity. Blood 105:4004–4012

    CAS  PubMed  Google Scholar 

  71. Kaufmann P, Engelstad K, Wei Y et al (2006) Dichloroacetate causes toxic neuropathy in MELAS. A randomized, controlled clinical trial. Neurology 66:324–330

    CAS  PubMed  Google Scholar 

  72. Kiebish MA, Han X, Cheng H et al (2008) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49:2545–2556

    CAS  PubMed  Google Scholar 

  73. Kiessling MK, Klemke CD, Kamiński MM et al (2009) Inhibition of constitutively activated nuclear factor-κB induces reactive oxygen species- and iron-dependent cell death in cutaneous T-cell lymphoma. Cancer Res 69:2365–2374

    CAS  PubMed  Google Scholar 

  74. Kim J, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    PubMed  Google Scholar 

  75. King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25:4675–4682

    CAS  PubMed  Google Scholar 

  76. Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227:421–430

    CAS  PubMed  Google Scholar 

  77. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburgʼs contributions to current concepts of cancer metabolism. Nature Rev Cancer 11:325–337

    CAS  Google Scholar 

  78. Kurbacher CM, Wagner U, Kolster B et al (1996) Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett 103:183–189

    CAS  PubMed  Google Scholar 

  79. Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107:2037–2042

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344

    CAS  PubMed  Google Scholar 

  81. Levine M, Padayatty SJ, Espey MG (2011) Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2:78–88

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Locasale JW, Grassian AR, Melman T et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43:869–874

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Li J, Tang Q, Li Y et al (2006) Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid. Acta Pharm Sinic 27:1078–1084

    CAS  Google Scholar 

  84. Low FM, Hampton MB, Peskin AV, Winterbourn CC (2007) Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood 109:2611–2617

    CAS  PubMed  Google Scholar 

  85. Lu J, Chew E-H, Holmgren A (2007) Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA 104:12288–12293

    CAS  PubMed  Google Scholar 

  86. Lu T, Gabrilovich DI (2012) Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res 18:4877–4882

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Bi 27:441–464

    CAS  Google Scholar 

  88. Madhok BM, Yeluri S, Perry SL et al (2010) Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer 102:1746–1752

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Marí M, Morales A, Colell A et al (2009) Mitochondrial glutathione, a key survival antioxidant. Antiox Redox Sign 11:2685–2700

    Google Scholar 

  90. Matoba S, Kang J-G, Patino WD et al (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    CAS  PubMed  Google Scholar 

  91. Michelakis ED, Sutendra G, Dromparis P et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34

    CAS  PubMed  Google Scholar 

  92. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Moertel CG, Fleming T, Creagan Et et al (1985) High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med 312:137–141

    CAS  PubMed  Google Scholar 

  94. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Niewisch MR, Kuçi Z, Wolburg H et al (2012) Influence of dichloroacetate (DCA) on lactate production and oxygen consumption in neuroblastoma cells: is DCA a suitable drug for neuroblastoma therapy? Cell Physiol Biochem 29:373–380

    CAS  PubMed  Google Scholar 

  96. Oberley LW, Oberley TD, Buettner GR (1981) Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses 7:21–42

    CAS  PubMed  Google Scholar 

  97. Oliva CR, Moellering DR, Gillespie GY et al (2011) Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS ONE 6:e24665. doi: 10.1371/journal.pone.0024665

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Oliva CR, Nozell SE, Diers A et al (2010) Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 285:39759–39767

    CAS  PubMed  Google Scholar 

  99. Padayatty SJ, Sun H, Wang Y et al (2004) Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 140:533–537

    CAS  PubMed  Google Scholar 

  100. Papac RJ (1994) Bone marrow metastases. A review. Cancer 74:2403–2413

    CAS  PubMed  Google Scholar 

  101. Papandreou I, Cairns RA, Fontana L et al (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    CAS  PubMed  Google Scholar 

  102. Pettersson HM, Karlsson J, Pietras A et al (2007) Arsenic trioxide and neuroblastoma cytotoxicity. J Bioenerg Biomembr 39:35–41

    CAS  PubMed  Google Scholar 

  103. Pettersson HM, Pietras A, Persson M et al (2009) Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells. Mol Cancer Ther 8:160–170

    CAS  PubMed  Google Scholar 

  104. Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941

    CAS  PubMed  Google Scholar 

  105. Riganti C, Gazzano E, Polimeni M et al (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53:421–436

    CAS  PubMed  Google Scholar 

  106. Ros S, Santos CR, Moco S et al (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2:328–343

    CAS  PubMed  Google Scholar 

  107. Sandstrom PA, Buttke TM (1993) Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc atl Acad Sci U S A 90:4708–4712

    CAS  Google Scholar 

  108. Scheel-Toellner D, Wang K, Craddock R et al (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104:2557–2564

    CAS  PubMed  Google Scholar 

  109. Schulz TJ, Thierbach R, Voigt A et al (2006) Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth Otto Warburg revisited. J Biol Chem 281:977–981

    CAS  PubMed  Google Scholar 

  110. Semenza GL, Roth PH, Fang HM et al (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    CAS  PubMed  Google Scholar 

  111. Shen L, Sun X, Fu Z et al (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res 18:1561–1567

    CAS  PubMed  Google Scholar 

  112. Stacpoole PW, Kerr DS, Barnes C et al (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117:1519–1531

    PubMed  Google Scholar 

  113. Stockwin LH, Yu SX, Borgel S et al (2010) Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int J Cancer 127:2510–2519

    CAS  PubMed  Google Scholar 

  114. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  115. Takubo K, Nagamatsu G, Kobayashi CI et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12:49–61

    CAS  PubMed  Google Scholar 

  116. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Vella S, Conti M, Tasso R et al (2012) Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells. Int J Cancer 130:1484–1493

    CAS  PubMed  Google Scholar 

  118. Vlashi E, Lagadec C, Vergnes L et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA 108:16062–16067

    CAS  PubMed  Google Scholar 

  119. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  120. Warburg O, Poesener K, Negelein E (1924) Über den Stoffwechsel von Tumoren. Biochem Z 152:319–344

    Google Scholar 

  121. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Warr MR, Passegué E (2013) Metabolic makeover for HSCs. Cell Stem Cell 12:1–3

    CAS  PubMed  Google Scholar 

  123. Weidemann A, Johnson RS (2008) Biology of HIF-1α. Cell Death Differ 15:621–627

    CAS  PubMed  Google Scholar 

  124. Wenzel U, Nickel A, Daniel H (2005a) α-lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2·- - generation. Apoptosis 10:359–368

    CAS  Google Scholar 

  125. Wenzel U, Nickel A, Daniel H (2005b) Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis. J Nutr 6:1510–1514

    Google Scholar 

  126. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nature Rev Cancer 11:393–410

    CAS  Google Scholar 

  127. Winterbourn CC, Stern A (1987) Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical. J Clin Invest 80:1486–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Wise DR, Ward PS, Shay JES et al (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci 108:19611–19616

    CAS  PubMed  Google Scholar 

  129. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wittig R, Coy JF (2008) The role of glucose metabolism and glucose-associated signalling in cancer. Perspect Medicin Chem 1:64–82

    PubMed Central  PubMed  Google Scholar 

  131. Wong JYY, Huggins GS, Debidda M et al (2008) Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 109:394–402

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wu M-C, Arimura GK, Yunis AA (1978) Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. Int J Cancer 22:728–733

    CAS  PubMed  Google Scholar 

  133. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Yu W-M, Liu X, Shen J et al (2013) Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12:62–74

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Zaidi N, Swinnen JV, Smans K (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72:3709–3714

    CAS  PubMed  Google Scholar 

  136. Zhang W, Trachootham D, Liu J et al (2012) Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biol 14:276–286

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the Förderverein für krebskranke Kinder e.V. Tuebingen for the financial support and Peter Michael Weber for the creation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Bruchelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bruchelt, G., Handgretinger, R., Weckenmann, M., Hahn, T. (2014). Glucose Metabolism and the Antioxidative Defense System in Cancer Cells: Options for the Application of ROS-based Anticancer Drugs. In: Kanner, S. (eds) Tumor Metabolome Targeting and Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9545-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9545-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9544-4

  • Online ISBN: 978-1-4614-9545-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics