Skip to main content

Regulating Mitochondrial Respiration in Cancer

  • Chapter
  • First Online:
Tumor Metabolome Targeting and Drug Development

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Mitochondria are a major focus of research in cancer due to their critical role in tumor physiology and metabolism. Metabolic remodeling is observed in tumor cells, often resulting in increased glycolytic activity, which serves for the generation of adenosine triphosphate (ATP), and as hubs for biosynthesis of key metabolites essential for cancer cell growth and proliferation. Mitochondria, thus, appear as a critical nexus in cancer metabolic alterations. Not only increased overexpression of oncogenes leads to altered mitochondrial respiration due to remodeling of mitochondrial gene expression and substrate channeling, but also particular mutations in components of the respiratory chain trigger an upstream feedback mechanism which also leads to metabolic reshaping in cancer cells. Mitochondrial respiration can thus be controlled by intrinsic and extrinsic mechanisms in cancer cells, which ultimately translates into different abilities to generate mitochondrial ATP. Altered mitochondrial structures and processes can be a target for chemotherapeutics, which are increasingly being developed to specifically target mitochondria in tumors. The present chapter reviews current knowledge on regulation of mitochondrial respiration and overall metabolism and how these specific alterations in the cell powerhouse can be used to eliminate tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abril J, De Heredia ML, González L, Clèries R, Nadal M, Condom E, Aguiló F, Gómez-Zaera M, Nunes V (2008) Altered expression of 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 mitochondrial genes in prostate cancer. Prostate 68(10):1086–1096. http://www.ncbi.nlm.nih.gov/pubmed/18409190

    Google Scholar 

  2. Akiyoshi T, Matzno S, Sakai M, Okamura N, Matsuyama K (2009) The potential of vitamin K3 as an anticancer agent against breast cancer that acts via the mitochondria-related apoptotic pathway. Cancer Chemother Pharmacol 65(1):143–150. http://www.ncbi.nlm.nih.gov/pubmed/19449007

    Google Scholar 

  3. Alberola-Ila J, Hernández-Hoyos G (2003) The Ras/MAPK cascade and the control of positive selection. Immunol Rev 191:79–96. http://www.ncbi.nlm.nih.gov/pubmed/12614353

    Google Scholar 

  4. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Molecular biology. Garland Science, New York. http://www.amazon.com/Molecular-Biology-Fourth-Bruce-Alberts/dp/0815332181

  5. Alimoghaddam K, Shariftabrizi A, Tavangar SM, Sanaat Z, Rostami S, Jahani M, Ghavamzadeh A (2006) Anti-leukemic and anti-angiogenesis efficacy of arsenic trioxide in new cases of acute promyelocytic leukemia. Leukemia lymphoma. Vol. 47. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16321832

  6. Alirol E, Martinou JC (2006) Mitochondria and cancer: is there a morphological connection? Oncogene 25(34):4706–4716. http://www.ncbi.nlm.nih.gov/pubmed/16892084

  7. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J-K, Shen M, Bellinger G et al (2011) Inhibition of pyruvate kinase m2 by reactive oxygen species contributes to cellular antioxidant responses. Science 1278(2011):1278–1283. doi:10.5061/dryad.bp23483h. http://stke.sciencemag.org/cgi/content/abstract/sci;334/6060/1278

    Google Scholar 

  8. Armstrong JS (2007) Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 151(8):1154–1165. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2189819&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  9. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291(6):C1159–C1171. http://www.ncbi.nlm.nih.gov/pubmed/16790502

    Google Scholar 

  10. Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W, Brown-Endres L, Tsuchihara K, Mak TW, Benchimol S (2011) ROS-mediated P53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol Cell 44(3):491–501. doi:10.1016/j.molcel.2011.08.038. http://www.ncbi.nlm.nih.gov/pubmed/22055193

    Google Scholar 

  11. Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G (2010) Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 1797(2):314–323. http://www.ncbi.nlm.nih.gov/pubmed/19931505

  12. Barreto MC, Pinto RE, Arrabaça JD, Pavão ML (2003) Inhibition of mouse liver respiration by Chelidonium majus isoquinoline alkaloids. Toxicol Lett 146(1):37–47. http://linkinghub.elsevier.com/retrieve/pii/S0378427403003576

    Google Scholar 

  13. Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP, Roth RA (1999) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem 274(29):20281–20286. http://www.ncbi.nlm.nih.gov/pubmed/10400647

    Google Scholar 

  14. Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31(Pt 6):1441–1444. http://www.ncbi.nlm.nih.gov/pubmed/14641084

  15. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120(Pt 5):838–848. http://www.ncbi.nlm.nih.gov/pubmed/17298981

    Google Scholar 

  16. Benard G, Bellance N, Jose C, Melser S, Nouette-Gaulain K, Rossignol R (2010) Multi-site control and regulation of mitochondrial energy production. Biochim Biophys Acta 1797(6–7):698–709. http://www.ncbi.nlm.nih.gov/pubmed/20226160

  17. Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a P53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. http://eprints.gla.ac.uk/23551/

    Google Scholar 

  18. Berardi MJ, Fantin VR (2011) Survival of the fittest: metabolic adaptations in cancer. Curr Opin Genet Dev 21(1):59–66. http://www.ncbi.nlm.nih.gov/pubmed/21112206

  19. Bernal SD, Lampidis TJ, McIsaac RM, Chen LB (1983) Anticarcinoma activity in vivo of rhodamine 123, a mitochondrial-specific dye. Science 222(4620):169–172. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve=PubMed=Citationlist_uids=6623064

    Google Scholar 

  20. Berridge MV, Herst PM, Tan AS (2010) Metabolic flexibility and cell hierarchy in metastatic cancer. Mitochondrion 10(6):584–588. http://www.ncbi.nlm.nih.gov/pubmed/20709626

    Google Scholar 

  21. Biasutto L, Mattarei A, Marotta E, Bradaschia A, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 18(20):5594–5597. http://www.ncbi.nlm.nih.gov/pubmed/18823777

    Google Scholar 

  22. Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, Sacconi A et al (2012) Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nature Commun 3(May):865. doi:10.1038/ncomms1859. http://www.nature.com/doifinder/10.1038/ncomms1859

    Google Scholar 

  23. Bo H, Jiang N, Ma G, Qu J, Zhang G, Cao D, Wen L, Liu S, Ji LL, Zhang Y (2008) Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free Radic Biol Med 44(7):1373–1381. http://www.ncbi.nlm.nih.gov/pubmed/18226608

  24. Bogliolo M, Borghini S, Abbondandolo A, Degan P (2002) Alternative metabolic pathways for energy supply and resistance to apoptosis in fanconi anaemia. Mutagenesis 17(1):25–30

    Article  CAS  PubMed  Google Scholar 

  25. Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A et al (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial dna mutations affecting complexes I and III. Cancer Res 66(12):6087–6096. http://www.ncbi.nlm.nih.gov/pubmed/16778181

    Google Scholar 

  26. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK et al (2010) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle Georgetown Tex 9(10):1960–1971. http://www.ncbi.nlm.nih.gov/pubmed/20495363

  27. Bosch-Presegué L, Vaquero A (2011) The dual role of sirtuins in cancer. Genes Cancer 2(6):648–662. doi:10.1177/1947601911417862. http://www.ncbi.nlm.nih.gov/pubmed/21941620

    Google Scholar 

  28. Boutros J, Almasan A (2009) Combining 2-deoxy-D-glucose with electron transport chain blockers: a double-edged sword. Cancer Biol Ther 8(13):1237–1238. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2923584&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  29. Boxer RB, Jang JW, Sintasath L, Chodosh LA (2004) Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6(6):577–586. http://www.ncbi.nlm.nih.gov/pubmed/15607962

    Google Scholar 

  30. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662. doi:10.1038/sj.onc.1209607. http://www.nature.com/onc/journal/v25/n34/pdf/1209607a.pdf

    Google Scholar 

  31. Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M et al (2000) A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6:42–49

    Google Scholar 

  32. Brière J-J, Favier J, Gimenez-Roqueplo A-P, Rustin P (2006) Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. Am J Physiol Cell Physiol 291(6):C1114–C1120. http://www.ncbi.nlm.nih.gov/pubmed/16760265

    Google Scholar 

  33. Brown AJ (2007) Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol 34(3):135–141. http://www.ncbi.nlm.nih.gov/pubmed/17250629

    Google Scholar 

  34. Bulteau A-L, Bayot A (2011) Mitochondrial proteases and cancer. Biochim Biophys Acta 1807(6):595–601. http://www.ncbi.nlm.nih.gov/pubmed/21194520

    Google Scholar 

  35. Burnichon N, Brière J-J, Libé R, Vescovo L, Rivière J, Tissier F, Jouanno E et al (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19(15):3011–3020. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2901140&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  36. Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL, Thompson CB (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24(26):4165–4173. http://www.ncbi.nlm.nih.gov/pubmed/15806154

    Google Scholar 

  37. Cadd VA, Hogg PJ, Harris AL, Feller SM (2006) Molecular profiling of signalling proteins for effects induced by the anti-cancer compound GSAO with 400 antibodies. BMC Cancer 6:155. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1550423&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  38. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1–2):17–26. http://www.ncbi.nlm.nih.gov/pubmed/15051313

    Google Scholar 

  39. Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4(2):61–70. http://www.ncbi.nlm.nih.gov/pubmed/16513837

    Google Scholar 

  40. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. http://www.ncbi.nlm.nih.gov/pubmed/19262508

    Google Scholar 

  41. Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, Zheng X, Sadee W, Sun D (2007) Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59(4):495–505. doi:10.1007/s00280–006-0291–9. http://www.ncbi.nlm.nih.gov/pubmed/16906425

    Google Scholar 

  42. Cao X, Jia G, Zhang T, Yang M, Wang B, Wassenaar PA, Cheng H, Knopp MV, Sun D (2008) Non-invasive MRI tumor imaging and synergistic anticancer effect of HSP90 inhibitor and glycolysis inhibitor in RIP1-Tag2 transgenic pancreatic tumor model. Cancer Chemother Pharmacol 62(6):985–994. http://www.ncbi.nlm.nih.gov/pubmed/18253734

  43. Capaldi RA, Halphen DG, Zhang YZ, Yanamura W (1988) Complexity and tissue specificity of the mitochondrial respiratory chain. J Bioenerg Biomembr 20(3):291–311

    Article  CAS  PubMed  Google Scholar 

  44. Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Timothy G, Howell A, Sneddon S et al (2012) CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle 11(12):2272–2284

    Google Scholar 

  45. Cárdenas-Navia LI, Mace D, Richardson RA, Wilson DF, Shan S, Dewhirst MW (2008) The pervasive presence of fluctuating oxygenation in tumors. Cancer Res 68(14):5812–5819. http://www.ncbi.nlm.nih.gov/pubmed/18632635

    Google Scholar 

  46. Cervera AM, Apostolova N, Crespo FL, Mata M, McCreath KJ (2008) Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res 68(11):4058–4067. http://www.ncbi.nlm.nih.gov/pubmed/18519664

    Google Scholar 

  47. Chao LC, Tontonoz P (2012) SIRT1 regulation—it ain’t all NAD. Mol Cell 45(1):9–11. doi:10.1016/j.molcel.2011.12.017. http://linkinghub.elsevier.com/retrieve/pii/S1097276511009907

    Google Scholar 

  48. Chatterjee A, Dasgupta S, Sidransky D (2011) Mitochondrial subversion in cancer. Cancer Prev Res (Phila) 4(5):638–654.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3298745&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  49. Chen ZX, Pervaiz S (2010) Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ 17(3):408–420. http://www.ncbi.nlm.nih.gov/pubmed/19834492

  50. Chen K-H, Hsu W-M, Chiang C-C, Li Y-S (2003) Transforming growth factor-beta2 inhibition of corneal endothelial proliferation mediated by prostaglandin. Curr Eye Res 26(6):363–370. http://www.ncbi.nlm.nih.gov/pubmed/12868017

    Google Scholar 

  51. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278(38):36027–36031. http://www.ncbi.nlm.nih.gov/pubmed/12840017

    Google Scholar 

  52. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192. doi:10.1074/jbc.M503062200. http://www.ncbi.nlm.nih.gov/pubmed/15899901

    Google Scholar 

  53. Chen J-Q, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793(10):1540–1570. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2744640&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  54. Chen G, Wang F, Trachootham D, Huang P (2010) Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds. Mitochondrion 10(6):614–625. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3085019&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  55. Chen W-L, Kuo K-T, Chou T-Y, Chen C-L, Wang C-H, Wei Y-H, Wang L-S (2012) The role of cytochrome c oxidase subunit Va in nonsmall cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis. BMC Cancer 12(1):273. doi:10.1186/1471–2407-12–273. http://www.ncbi.nlm.nih.gov/pubmed/22748147

  56. Cherk MH, Foo SS, Poon AMT, Knight SR, Murone C, Papenfuss AT, Sachinidis JI, Saunder THC, O’Keefe GJ, Scott AM (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J Nucl Med 47(12):1921–1926. http://www.ncbi.nlm.nih.gov/pubmed/17138734

    Google Scholar 

  57. Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F, Messa C, Alberghina L (2011) From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 30(1):30–51. doi:10.1016/j.biotechadv.2011.07.006. http://www.ncbi.nlm.nih.gov/pubmed/21802503

    Google Scholar 

  58. Choi WY, Kim G-Y, Lee WH, Choi YH (2008) Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy 54(4):279–287. http://www.ncbi.nlm.nih.gov/pubmed/18667818

    Google Scholar 

  59. Choi WY, Jin C-Y, Han MH, Kim G-Y, Kim ND, Lee WH, Kim S-K, Choi YH (2009) Sanguinarine sensitizes human gastric adenocarcinoma ags cells to TRAIL-mediated apoptosis via down-regulation of AKT and activation of caspase-3. Anticancer Res 29(11):4457–4465. http://www.ncbi.nlm.nih.gov/pubmed/20032392

    Google Scholar 

  60. Choo AY, Kim SG, Heiden MGV, Mahoney SJ, Vu H, Yoon S-O, Cantley LC, Blenis J (2010) Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38(4):487–499. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2896794&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  61. Christofk HR, Heiden MGV, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233. doi:10.1038/nature06734. http://www.ncbi.nlm.nih.gov/pubmed/18337823

    Google Scholar 

  62. Cook CC, Kim A, Terao S, Gotoh A, Higuchi M (2012) Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death Dis 3(1):e258. doi:10.1038/cddis.2011.141. http://dx.doi.org/10.1038/cddis.2011.141

  63. Cuezva JM, Krajewska M, De Heredia ML, Krajewski S, Santamaría G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62(22):6674–6681. http://www.ncbi.nlm.nih.gov/pubmed/12438266

    Google Scholar 

  64. Cuezva JM, Sánchez-Aragó M, Sala S, Blanco-Rivero A, Ortega AD (2007) A message emerging from development: the repression of mitochondrial beta-F1-ATPase expression in cancer. J Bioenerg Biomembr 39(3):259–265. http://www.ncbi.nlm.nih.gov/pubmed/17712532

    Google Scholar 

  65. Cuperus R, Leen R, Tytgat GAM, Caron HN, Van Kuilenburg ABP (2010) Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci 67(5):807–816. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2824117&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  66. Czarnecka AM, Klemba A, Krawczyk T, Zdrozny M, Arnold RS, Bartnik E, Petros JA (2010) Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncol Rep 23(2):531–535. http://www.ncbi.nlm.nih.gov/pubmed/20043118

    Google Scholar 

  67. Damm F, Bunke T, Thol F, Markus B, Wagner K, Göhring G, Schlegelberger B et al (2011) Prognostic implications and molecular associations of NADH dehydrogenase subunit 4 (ND4) mutations in acute myeloid leukemia. Leukemia 26(2):289–295. doi:10.1038/leu.2011.200. http://www.ncbi.nlm.nih.gov/pubmed/21826063

    Google Scholar 

  68. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70(3):859–862. doi:10.1158/0008–5472.CAN-09–3556. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2818441&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  69. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877–890. doi:10.1101/gad.189365.112. http://www.ncbi.nlm.nih.gov/pubmed/22549953

    Google Scholar 

  70. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. doi:10.1016/j.cell.2012.03.003. http://linkinghub.elsevier.com/retrieve/pii/S0092867412002966

    Google Scholar 

  71. Dang CV, Kim J, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56. http://www.ncbi.nlm.nih.gov/pubmed/18046334

    Google Scholar 

  72. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15(21):6479–6483. http://www.ncbi.nlm.nih.gov/pubmed/19861459

    Google Scholar 

  73. Dasgupta S, Hoque MO, Upadhyay S, Sidransky D (2008) Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res 68(3):700–706. http://www.ncbi.nlm.nih.gov/pubmed/18245469

    Google Scholar 

  74. David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463(7279):364–368. http://www.ncbi.nlm.nih.gov/pubmed/20010808

    Google Scholar 

  75. Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J (2008) A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron 1(1):53–68. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2654353&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  76. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2148292&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  77. De Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610. http://www.ncbi.nlm.nih.gov/pubmed/19052620

    Google Scholar 

  78. Decaudin D, Marzo I, Brenner C, Kroemer G (1998) Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy (review). Int J Oncol 12(1):141–152. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9454898

    Google Scholar 

  79. Dell’Antone P (2009) Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Med Chem 5(6):491–496

    Google Scholar 

  80. Dell’ Antone P (2012) Energy metabolism in cancer cells: How to Explain the Warburg and Crabtree effects? Med Hypotheses 79(3):388–392. doi:10.1016/j.mehy.2012.06.002. http://www.ncbi.nlm.nih.gov/pubmed/22770870

    Google Scholar 

  81. Delmas D, Rébé C, Micheau O, Athias A, Gambert P, Grazide S, Laurent G, Latruffe N, Solary E (2004) Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene 23(55):8979–8986. http://www.ncbi.nlm.nih.gov/pubmed/15480430

    Google Scholar 

  82. Deng C-X (2009) SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5(2):147–152. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2631220&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  83. Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163

    CAS  PubMed  Google Scholar 

  84. Denton RM, Richards DA, Chin JG (1978) Calcium ions and the regulation of NAD+ -linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 176(3):899–906. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1186314&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  85. Desler C, Marcker ML, Singh KK, Rasmussen LJ (2011) The importance of mitochondrial DNA in aging and cancer. J Aging Res 2011:407536. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092560&tool=pmcentrez&rendertype=abstract

  86. Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4(12):1367–1373. http://www.ncbi.nlm.nih.gov/pubmed/16294028

    Google Scholar 

  87. Dewhirst MW (2007) Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res 67(3):854–855. http://www.ncbi.nlm.nih.gov/pubmed/17283112

    Google Scholar 

  88. Diano S, Horvath TL (2012) Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 18(1):52–8. doi:10.1016/j.molmed.2011.08.003. http://www.ncbi.nlm.nih.gov/pubmed/21917523

  89. Dias N, Bailly C (2005) Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 70(1):1–12. doi:10.1016/j.bcp.2005.03.021. http://www.ncbi.nlm.nih.gov/pubmed/15907809

    Google Scholar 

  90. Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M (2009) Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta 1796(2):252–265. http://www.ncbi.nlm.nih.gov/pubmed/19682552

    Google Scholar 

  91. Diaz-Ruiz R, Rigoulet M, Devin A (2011) The warburg and crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807(6):568–576. http://www.ncbi.nlm.nih.gov/pubmed/20804724

    Google Scholar 

  92. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. http://www.ncbi.nlm.nih.gov/pubmed/19194462

    Google Scholar 

  93. Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33(6):542–564. http://www.ncbi.nlm.nih.gov/pubmed/17624680

    Google Scholar 

  94. Dilda PJ, Ramsay EE, Corti A, Pompella A, Hogg PJ (2008) Metabolism of the tumor angiogenesis inhibitor 4-(N-(S-Glutathionylacetyl)amino)phenylarsonous acid. J Biol Chem 283(51):35428–35434. doi:10.1074/jbc.M804470200. http://www.ncbi.nlm.nih.gov/pubmed/18723877

    Google Scholar 

  95. Di Monte D, Ross D, Bellomo G, Eklöw L, Orrenius S (1984) Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch Biochem Biophys 235(2):334–342. http://view.ncbi.nlm.nih.gov/pubmed/6097182

    Google Scholar 

  96. Domenis R, Comelli M, Bisetto E, Mavelli I (2011) Mitochondrial bioenergetic profile and responses to metabolic inhibition in human hepatocarcinoma cell lines with distinct differentiation characteristics. J Bioenerg Biomembr 43(5):493–505. http://www.ncbi.nlm.nih.gov/pubmed/21882038

  97. Don AS, Hogg PJ (2004) Mitochondria as cancer drug targets. Trends Mol Med 10(8):372–378. http://www.ncbi.nlm.nih.gov/pubmed/15310457

    Google Scholar 

  98. Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ (2003) A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3(5):497–509. http://www.scopus.com/inward/record.url?eid=2-s2.0–0142010897&partnerID=40&md5=bfd334bfd89a8947881c1aa8e3511f60

    Google Scholar 

  99. Dong L-F, Swettenham E, Eliasson J, Wang X-F, Gold M, Medunic Y, Stantic M et al (2007) Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res 67(24):11906–11913. http://www.ncbi.nlm.nih.gov/pubmed/18089821

    Google Scholar 

  100. Dong L-F, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, Rohlena J et al (2009) Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15(5):1593–1600. http://www.ncbi.nlm.nih.gov/pubmed/19223492.

    Google Scholar 

  101. Dong L-F, Jameson VJA, Tilly D, Prochazka L, Rohlena J, Valis K, Truksa J et al (2011) Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med 50(11):1546–1555. http://www.ncbi.nlm.nih.gov/pubmed/21402148.

    Google Scholar 

  102. Dos Santos MA, Borges JB, De Almeida DCCuri R (2004) Metabolism of the microregions of human breast cancer. Cancer Lett 216(2):243–248

    Article  PubMed  Google Scholar 

  103. Dromparis P, Sutendra G, Michelakis ED (2010) The role of mitochondria in pulmonary vascular remodeling. J Mol Med (Berl) 88(10):1003–1010. http://www.ncbi.nlm.nih.gov/pubmed/20734021

    Google Scholar 

  104. Dudkina NV, Kouril R, Peters K, Braun H-P, Boekema EJ (2010) Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 1797(6–7):664–670. http://www.ncbi.nlm.nih.gov/pubmed/20036212

    Google Scholar 

  105. Echtay KS, Brand MD (2007) 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Rep 12(1):26–29. http://www.ncbi.nlm.nih.gov/pubmed/17263904

    Google Scholar 

  106. Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13(7):2276–2288. http://www.molbiolcell.org/cgi/content/abstract/13/7/2276

    Google Scholar 

  107. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899. doi:10.1158/0008–5472.CAN-03–2904

    Google Scholar 

  108. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356. doi:10.1038/nm.1890. http://www.ncbi.nlm.nih.gov/pubmed/19029981

    Google Scholar 

  109. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181. http://www.ncbi.nlm.nih.gov/pubmed/16517421

    Google Scholar 

  110. Fanciulli M, Valentini A, Bruno T, Citro G, Zupi G, Floridi A (1996) Effect of the antitumor drug lonidamine on glucose metabolism of adriamycin-sensitive and -resistant human breast cancer cells. Oncol Res 8(3):111–120

    CAS  PubMed  Google Scholar 

  111. Fantin VR, Leder P (2004) F16, a mitochondriotoxic compound, triggers apoptosis or necrosis depending on the genetic background of the target carcinoma cell. Cancer Res 64(1):329–336. http://www.ncbi.nlm.nih.gov/pubmed/14729642

    Google Scholar 

  112. Feichtinger RG, Zimmermann F, Mayr JA, Neureiter D, Hauser-Kronberger C, Schilling FH, Jones N, Sperl W, Kofler B (2010) Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma. BMC Cancer 10(1):149. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2861660&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  113. Feng S, Xiong L, Ji Z, Cheng W, Yang H (2012) Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6(1)125–130. doi:10.3892/mmr.2012.870. http://www.ncbi.nlm.nih.gov/pubmed/22505229

  114. Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A (2011) FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19(6):1–12. doi:10.1038/cdd.2011.179. http://dx.doi.org/10.1038/cdd.2011.179

    Google Scholar 

  115. Fernández-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P (2011) Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 11(1):207–213. http://www.ncbi.nlm.nih.gov/pubmed/20933104

    Google Scholar 

  116. Ferreira LMR (2010) Cancer metabolism: the warburg effect today. Exp Mol Pathol 89(3):372–380. http://www.ncbi.nlm.nih.gov/pubmed/20804748

    Google Scholar 

  117. Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012:762825. doi:10.1155/2012/762825. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3361160&tool=pmcentrez&rendertype=abstract

  118. Filomeni G, Cardaci S, Ferreira AMDC, Rotilio G, Ciriolo MR (2011) Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neur. Biochem J 437(3):443–453. doi:10.1042/BJ20110510. http://www.ncbi.nlm.nih.gov/pubmed/21548882

    Google Scholar 

  119. Fosslien E (2008) Cancer morphogenesis: role of mitochondrial failure. Ann Clin Lab Sci 38(4):307–329. http://www.ncbi.nlm.nih.gov/pubmed/18988924

    Google Scholar 

  120. Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19(1):4–11. http://www.ncbi.nlm.nih.gov/pubmed/19101633

    Google Scholar 

  121. Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122. http://www.ncbi.nlm.nih.gov/pubmed/17418790

    Google Scholar 

  122. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nature Rev Drug Discov 9(6):447–464. doi:10.1038/nrd3137. http://www.ncbi.nlm.nih.gov/pubmed/20467424

    Google Scholar 

  123. Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F (2009) Glutamine deprivation induces abortive S-phase rescued by deoxyribonucleotides in K-Ras transformed fibroblasts. PLoS ONE 4(3):17. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2650790&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  124. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7(523):523. doi:10.1038/msb.2011.56. http://www.nature.com/doifinder/10.1038/msb.2011.56

  125. Gallagher EJ, LeRoith D (2011) Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 1243(1):54–68. doi:10.1111/j.1749–6632.2011.06285.x. http://www.ncbi.nlm.nih.gov/pubmed/22211893

  126. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A et al (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A 104(21):9001–9006. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1885617&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  127. Gasparre G, Hervouet E, De Laplanche E, Demont J, Pennisi LF, Colombel M, Mège-Lechevallier F et al (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17(7):986–995. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18156159

    Google Scholar 

  128. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63(14):3847–3854. http://www.ncbi.nlm.nih.gov/pubmed/12873971

    Google Scholar 

  129. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39(7–8):1358–1366. http://www.ncbi.nlm.nih.gov/pubmed/17499003

    Google Scholar 

  130. Geschwind J-FH, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62(14):3909–3913. http://www.ncbi.nlm.nih.gov/pubmed/12124317

    Google Scholar 

  131. Giannoni E, Bianchini F, Calorini L, Chiarugi P (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal 14(12):2361–2371. http://www.ncbi.nlm.nih.gov/pubmed/21235356

  132. Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444(1):1–10. doi:10.1042/BJ20120030. http://www.ncbi.nlm.nih.gov/pubmed/22533670

    Google Scholar 

  133. Gledhill JR, Montgomery MG, Leslie AGW, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 104(34):13632–13637. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1948022&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  134. Gleiss B, Gogvadze V, Orrenius S, Fadeel B (2002) Fas-triggered phosphatidylserine exposure is modulated by intracellular ATP. FEBS Lett 519(1–3):153–158. http://www.ncbi.nlm.nih.gov/pubmed/12023035

    Google Scholar 

  135. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845. http://www.ncbi.nlm.nih.gov/pubmed/19467914

    Google Scholar 

  136. Gogvadze V, Norberg E, Orrenius S, Zhivotovsky B (2010) Involvement of Ca2+ and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer 127(8):1823–1832. doi:10.1002/ijc.25204. http://www.ncbi.nlm.nih.gov/pubmed/20104525

    Google Scholar 

  137. Gogvadze V, Zhivotovsky B, Orrenius S (2010) The warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 31(1):60–74. http://www.ncbi.nlm.nih.gov/pubmed/19995572

    Google Scholar 

  138. Gottlieb E, Tomlinson IPM (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5(11):857–866. http://eprints.gla.ac.uk/23550/

    Google Scholar 

  139. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324(5935):1713–1716. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2840701&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  140. Green DR, Chipuk JE (2006) p53 and metabolism: inside the TIGAR. Cell 126(1):30–32. doi:10.1016/j.cell.2006.06.032

    Google Scholar 

  141. Greiner EF, Guppy M, Brand K (1994) Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 269(50):31484–31490. http://www.ncbi.nlm.nih.gov/pubmed/7989314

  142. Guchelaar H, Vermes A, Vermes I, Haanen C (1997) Apoptosis: molecular mechanisms and implications for cancer chemotherapy. Pharm World Sci 19(3):119–125 [Erratum appears in Pharm World Sci 1997 Oct;19(5):253]

    Article  CAS  PubMed  Google Scholar 

  143. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massagué J (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770. http://www.ncbi.nlm.nih.gov/pubmed/17429393

    Google Scholar 

  144. Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB (2011) chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 1215(1):150–160. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3060406&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  145. Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28(2):718–731. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2223429&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  146. Ha T-K, Her N-G, Lee M-G, Ryu B-K, Lee J-H, Han J, Jeong S-I et al (2012) Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res 72(16):4097–5109. doi:10.1158/0008–5472.CAN-12–0448. http://www.ncbi.nlm.nih.gov/pubmed/22706202

    Google Scholar 

  147. Hackenbrock CR (1972) Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. J Cell Biol 53(2):450–465. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2108731&tool=pmcentrez&rendertype=abstroact

    Google Scholar 

  148. Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Roy SS, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40(5–6):553–560. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2692319&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  149. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35(9):505–513. http://www.ncbi.nlm.nih.gov/pubmed/20430626

    Google Scholar 

  150. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:10.1007/s00262–010-0968–0. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3042096&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  151. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. http://www.ncbi.nlm.nih.gov/pubmed/21376230

    Google Scholar 

  152. Hansford RG, Chappell JB.(1967) The effect of Ca2 + on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Biochem Biophys Res Commun 27(6):686–692. http://www.ncbi.nlm.nih.gov/pubmed/21376230http://www.ncbi.nlm.nih.gov/pubmed/4964598

  153. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311–321. http://www.ncbi.nlm.nih.gov/pubmed/16226706

    Google Scholar 

  154. He X, Cao X (2010) Identification of alternatively spliced GRIM-19 mRNA in kidney cancer tissues. J Hum Genet 55(8):507–511. doi:10.1038/jhg.2010.57. http://www.ncbi.nlm.nih.gov/pubmed/20505682

    Google Scholar 

  155. Heerdt BG, Halsey HK, Lipkin M, Cancer C, Augenlicht LH (1990) Expression of mitochondrial cytochrome c oxidase in human colonic cell differentiation, transformation, and risk for colonic cancer. Cancer Res 50(5):1596–1600

    Google Scholar 

  156. Hensen EF, Bayley J-P (2011) Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer 10(2):355–363. http://www.ncbi.nlm.nih.gov/pubmed/21082267

    Google Scholar 

  157. Hu X, Zhang X, Qiu S, Yu D, Lin S (2010) Biochemical and biophysical research communications salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem Biophys Res Commun 398(1):62–67. doi:10.1016/j.bbrc.2010.06.033. http://dx.doi.org/10.1016/j.bbrc.2010.06.033

  158. Huang Y, Peng J, Oberley LW, Domann FE (1997) Transcriptional inhibition of manganese superoxide dismutase (SOD2) gene expression by DNA methylation of the 5′ CpG island. Free Radic Biol Med 23(2):314–320. http://www.ncbi.nlm.nih.gov/pubmed/9199894

  159. Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta 722(1):43–50. http://linkinghub.elsevier.com/retrieve/pii/S0167488907002364

    Google Scholar 

  160. Hüttemann M, Lee I, Grossman LI, Doan JW, Sanderson TH (2012) Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv Exp Med Biol 748:237–64. doi:10.1007/978–1-4614–3573-0_10. http://www.ncbi.nlm.nih.gov/pubmed/22729861

  161. Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825(1):111–116. doi:10.1016/j.bbcan.2011.10.007. http://www.ncbi.nlm.nih.gov/pubmed/22101401

  162. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J-I (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320(5876):661–664. http://www.ncbi.nlm.nih.gov/pubmed/18388260

    Google Scholar 

  163. Isidoro A, Martínez M, Fernández PL, Ortega AD, Santamaría G, Chamorro M, Reed JC, Cuezva JM (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378(Pt 1):17–20. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1223948&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  164. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JMichael, Felsher DW (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297(5578):102–104. http://www.ncbi.nlm.nih.gov/pubmed/12098700

  165. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220. http://www.sciencemag.org/cgi/doi/10.1126/science.275.5297.218

    Google Scholar 

  166. Jantova S, Cipak L, Letasiova S (2007) Berberine induces apoptosis through a mitochondrial/ caspase pathway in human promonocytic U937 cells. Toxicol In Vitro 21:25–31. doi:10.1016/j.tiv.2006.07.015

    Google Scholar 

  167. Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R, Nilsson E, Multhaupt H et al (2011) FoxO3A promotes metabolic adaptation to hypoxia by antagonizing myc function. Eur Mol Biol Organ J 30(22):4554–4570. doi:10.1038/emboj.2011.323. http://www.ncbi.nlm.nih.gov/pubmed/21915097

    Google Scholar 

  168. Jia L, Yu W, Wang P, Sanders BG, Kline K (2008) In vivo and in vitro studies of anticancer actions of alpha-TEA for human prostate cancer cells. Prostate 68(8):849–860. doi:10.1002/pros.20750. http://www.ncbi.nlm.nih.gov/pubmed/18324647

    Google Scholar 

  169. Jung K, Seidel B, Rudolph B, Lein M, Cronauer MV, Henke W, Hampel G, Schnorr D, Loening SA (1997) antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells. Free Radic Biol Med 23(1):127–133. http://www.ncbi.nlm.nih.gov/pubmed/9165305

  170. Kamp DW, Shacter E, Weitzman SA (2011) Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park) 25(5):400–410, 413. http://www.ncbi.nlm.nih.gov/pubmed/21710835

  171. Kang J, Pervaiz S (2012) Mitochondria: redox metabolism and dysfunction. Biochem Res Int 2012: 896751. doi:10.1155/2012/896751. http://www.ncbi.nlm.nih.gov/pubmed/22593827

  172. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131(2):257–270. http://www.ncbi.nlm.nih.gov/pubmed/17956728

    Google Scholar 

  173. Kang BH, Plescia J, Song HY, Meli M, Colombo G, Beebe K, Scroggins B, Neckers L, Altieri DC (2009) Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119(3):454–464. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2648691&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  174. Kazama H, Ricci J-E, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29(1):21–32. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2704496&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  175. Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, Califano JA (2004) Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res 10(24):8512–8515. http://www.ncbi.nlm.nih.gov/pubmed/15623632

    Google Scholar 

  176. Kim J, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185. http://www.ncbi.nlm.nih.gov/pubmed/16517405

    Google Scholar 

  177. Kim J, Gao P, Liu Y-C, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27(21):7381–7393. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2169056&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  178. Kim Y-S, Yang C-T, Wang J, Wang L, Li Z-B, Chen X, Liu S (2008) Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations. J Med Chem 51(10):2971–2984. http://www.lhl.uab.edu:15002/pubmed/18419113

    Google Scholar 

  179. Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15(4):660–666. http://www.ncbi.nlm.nih.gov/pubmed/18219320

    Google Scholar 

  180. Klingenberg M (1970) Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem/FEBS 13(2):247–252. http://www.ncbi.nlm.nih.gov/pubmed/5439930

    Google Scholar 

  181. Knight JRP, Milner J (2012) SIRT1, metabolism and cancer. Curr Opin Oncol 24(1): 68–75. doi:10.1097/CCO.0b013e32834d813b. http://www.ncbi.nlm.nih.gov/pubmed/22080944

    Google Scholar 

  182. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173(1):83–91. http://www.ncbi.nlm.nih.gov/pubmed/11578813

    Google Scholar 

  183. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185. http://www.ncbi.nlm.nih.gov/pubmed/15665293

    Google Scholar 

  184. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337. http://www.ncbi.nlm.nih.gov/pubmed/21508971

    Google Scholar 

  185. Kovacevic Z, McGivan JD (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63(2):547–605. http://www.ncbi.nlm.nih.gov/pubmed/6132422

    Google Scholar 

  186. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16(3):202–208. http://www.ncbi.nlm.nih.gov/pubmed/10705076

  187. Küppers M, Ittrich C, Faust D, Dietrich C (2010) The transcriptional programme of contact-inhibition. J Cell Biochem 110(5):1234–1243. http://www.ncbi.nlm.nih.gov/pubmed/20564218

    Google Scholar 

  188. Kwak C, Jin RJ, Lee C, Park MS, Lee SE (2002) Thrombospondin-1, vascular endothelial growth factor expression and their relationship with P53 status in prostate cancer and benign prostatic hyperplasia. BJU International 89(3):303–309. http://www.ncbi.nlm.nih.gov/pubmed/11856116

    Google Scholar 

  189. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1. Cell 127(6):1109–1122. doi:10.1016/j.cell.2006.11.013. http://linkinghub.elsevier.com/retrieve/pii/S0092867406014280

    Google Scholar 

  190. Lampidis TJ, Bernal SD, Summerhayes IC, Chen LB (1983) Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res 43(2):716–720. http://www.ncbi.nlm.nih.gov/pubmed/6848187

    Google Scholar 

  191. Law AKT, Gupta D, Levy S, Wallace DC, McKeon RJ, Buck CR (2004) TGF-β1 induction of the adenine nucleotide translocator 1 in astrocytes occurs through Smads and Sp1 transcription factors. BMC Neuroscience 5:1. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=324399&tool=pmcentrez&rendertype=abstract

  192. Le SB, Katie Hailer M, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC et al (2007) Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282(12):8860–8872. http://www.jbc.org/content/282/12/8860.long

    Google Scholar 

  193. Lee H-C, Wei Y-H (2009) Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci 10(2):674–701. http://www.ncbi.nlm.nih.gov/pubmed/19333428

    Google Scholar 

  194. Lee M, Hyun DH, Marshall KA, Ellerby LM, Bredesen DE, Jenner P, Halliwell B (2001) Effect of overexpression of Bcl-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome. Free Radic Biol Med 31(12):1550–1559. http://www.ncbi.nlm.nih.gov/pubmed/11744329

    Google Scholar 

  195. Lee H-C, Chang C-M, Chi C-W (2010) Somatic mutations of mitochondrial dna in aging and cancer progression. Ageing Res Rev 9(Suppl 1): S47–S58. http://www.ncbi.nlm.nih.gov/pubmed/20816876

    Google Scholar 

  196. Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS (2012) Wnt/Snail signaling regulates cytochrome c oxidase and glucose metabolism. Cancer Res 2:3607–3617. doi:10.1158/0008–5472.CAN-12–0006. http://www.ncbi.nlm.nih.gov/pubmed/22637725

    Google Scholar 

  197. Lemarie A, Grimm S (2009) Mutations in the heme B-binding residue of SDHC inhibit assembly of respiratory chain complex II in mammalian cells. Mitochondrion 9(4):254–260. http://www.ncbi.nlm.nih.gov/pubmed/19332149

    Google Scholar 

  198. Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier A-L, Grimm S (2011) Specific disintegration of complex II succinate: ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ 18(2):338–349. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3044456&tool=pmcentrez&rendertype=abstract

  199. Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, Fontaine E, Wiernsperger NF (2003) Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 29(4 Pt 2):6S88–S94. http://www.ncbi.nlm.nih.gov/pubmed/14502105

    Google Scholar 

  200. Li R, Hodny Z, Luciakova K, Barath P, Nelson BD (1996) Sp1 activates and inhibits transcription from separate elements in the proximal promoter of the human adenine nucleotide translocase 2 (ANT2) gene. J Biol Chem 271(31):18925–18930. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed & dopt=Citation&list_uids=8702555

    Google Scholar 

  201. Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC (2007) Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-kappaB via c-SRC and oxidant-dependent cell death. Cancer Res 67(15):7368–7377. http://www.ncbi.nlm.nih.gov/pubmed/17671207

    Google Scholar 

  202. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874. doi:10.1038/ng.890. http://www.ncbi.nlm.nih.gov/pubmed/21804546

    Google Scholar 

  203. López-Ríos F, Sánchez-Aragó M, García-García E, Ortega AD, Berrendero JR, Pozo-Rodríguez F, López-Encuentra A, Ballestín C, Cuezva JM (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67(19):9013–9017. http://www.ncbi.nlm.nih.gov/pubmed/17909002

    Google Scholar 

  204. Lu J, Sharma LK, Bai Y (2009) Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 19(7):802–815. http://www.ncbi.nlm.nih.gov/pubmed/19532122

    Google Scholar 

  205. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 Is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145(5):732–744. http://www.ncbi.nlm.nih.gov/pubmed/21620138

    Google Scholar 

  206. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z et al (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell 42(6):719–730. http://www.ncbi.nlm.nih.gov/pubmed/21700219

    Google Scholar 

  207. Ma J-T, Han C-B, Zhou Y, Zhao J-Z, Jing W, Zou H-W (2012) Altered expression of mitochondrial cytochrome c oxidase I and NADH dehydrogenase 4 transcripts associated with gastric tumorigenesis and tumor dedifferentiation. Mol Med Rep 5(6):1526–1530. doi:10.3892/mmr.2012.832. http://www.ncbi.nlm.nih.gov/pubmed/22407105

  208. Maas MFPM, Sellem CH, Krause F, Dencher NA, Sainsard-Chanet A (2010) Molecular gene therapy: overexpression of the alternative NADH dehydrogenase NDI1 restores overall physiology in a fungal model of respiratory complex I deficiency. J Mol Biol 399(1):31–40. http://www.ncbi.nlm.nih.gov/pubmed/20398675

    Google Scholar 

  209. Maher JC, Krishan A, Lampidis TJ (2004) Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53(2):116–122. http://www.ncbi.nlm.nih.gov/pubmed/14605866

    Google Scholar 

  210. Marchetti P, Zamzami N, Joseph B, Schraen-Maschke S, Méreau-Richard C, Costantini P, Métivier D, Susin SA, Kroemer G, Formstecher P (1999) The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res 59(24):6257–6266. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10626821

    Google Scholar 

  211. Masgras I, Rasola A, Bernardi P (2012) Induction of the permeability transition pore in cells depleted of mitochondrial DNA. Biochim Biophys Acta 1817(10):2–8. doi:10.1016/j.bbabio.2012.02.022. http://www.ncbi.nlm.nih.gov/pubmed/22402226

  212. Mashima T, Seimiya H, Tsuruo T (2009) De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer100(9):1369–1372. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2694429&tool=pmcentrez&rendertype=abstract

  213. McCormack JG, Denton RM (1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180(3):533–544. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1161091&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  214. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. 2(31):31ra34. doi:10.1126/scitranslmed.3000677

    Google Scholar 

  215. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023. doi:10.1038/ncb2329. http://www.nature.com/doifinder/10.1038/ncb2329

    Google Scholar 

  216. Minocherhomji S, Tollefsbol TO, Singh KK (2012) Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 7(4):326–334. doi:10.4161/epi.19547. http://www.ncbi.nlm.nih.gov/pubmed/22419065

    Google Scholar 

  217. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191(4784):144–148. doi:10.1038/191144a0. http://www.ncbi.nlm.nih.gov/pubmed/13771349

    Google Scholar 

  218. Mitchell P, Moyle J (1967) Respiration-driven proton translocation in rat liver mitochondria. Biochem J 105(3):1147–1162. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16742541

    Google Scholar 

  219. Modica-Napolitano JS, Aprille JR (1987) Basis for the selective cytotoxicity of rhodamine 123. Cancer Res 47(16):4361–4365. http://www.ncbi.nlm.nih.gov/pubmed/2886218

    Google Scholar 

  220. Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49(1–2):63–70. http://www.ncbi.nlm.nih.gov/pubmed/11377803

    Google Scholar 

  221. Modica-napolitano JS, Kulawiec M, Singh KK (2007) Mitochondria and human cancer. Curr Mol Med 7(1):121–131

    Google Scholar 

  222. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3(3):214–220. http://www.ncbi.nlm.nih.gov/pubmed/11994742

    Google Scholar 

  223. Moreadith RW, Lehninger AL (1984) The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+ -dependent malic enzyme. J Biol Chem 259(10):6215–6221. http://www.ncbi.nlm.nih.gov/pubmed/6144677

    Google Scholar 

  224. Moreira PI, Custódio J, Moreno A, Oliveira CR, Santos MS (2006) Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281(15):10143–10152. http://www.ncbi.nlm.nih.gov/pubmed/16410252

    Google Scholar 

  225. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418. http://www.ncbi.nlm.nih.gov/pubmed/17302740

    Google Scholar 

  226. Morfouace M, Lalier L, Bahut M, Bonamain V, Naveilhan P, Guette C, Oliver L, Gueguen N, Reynier P, Vallette FM (2012) Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications. J Biol Chem. doi:10.1074/jbc.M111.320028. http://www.ncbi.nlm.nih.gov/pubmed/22782899

  227. Muñoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248. doi:10.1038/cddis.2011.123. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3270265&tool=pmcentrez&rendertype=abstract

  228. Notario B, Zamora M, Viñas O, Mampel T (2003) All-trans-retinoic acid binds to and inhibits adenine nucleotide translocase and induces mitochondrial permeability transition. Mol Pharmacol 63(1):224–231. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12488555

  229. Okamaoto M, Ohsato T, Nakada K, Isobe K, Spelbrink JN, Hayashi J-I, Hamasaki N, Kang D (2003) Ditercalinium chloride, a pro-anticancer drug, intimately associates with mammalian mitochondrial dna and inhibits its replication. Curr Genet 43(5):364–370. http://www.ncbi.nlm.nih.gov/pubmed/12679881

    Google Scholar 

  230. Ottino P, Duncan JR (1997) Effect of alpha-tocopherol succinate on free radical and lipid peroxidation levels in BL6 melanoma cells. Free Radic Biol Med 22(7):1145–1151. http://www.ncbi.nlm.nih.gov/pubmed/9098087

  231. Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard J-P, Lafontaine JP, Payan MJ et al (2008) High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 15(8):2318–2328. http://www.ncbi.nlm.nih.gov/pubmed/18506539

  232. Owens KM, Kulawiec M, Desouki MM, Vanniarajan A, Singh KK (2011) Impaired OXPHOS complex III in breast cancer. PLoS ONE 6(8):10. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3162009&tool=pmcentrez&rendertype=abstract

  233. Pani G, Koch OR, Galeotti T (2009) The p53-p66shc-manganese superoxide dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int J Biochem Cell Biol 41(5):1002–1005. doi:10.1016/j.biocel.2008.10.011. http://www.ncbi.nlm.nih.gov/pubmed/18992840

    Google Scholar 

  234. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29(2):351–378. http://www.ncbi.nlm.nih.gov/pubmed/20386957

    Google Scholar 

  235. Papa S, De Rasmo D, Technikova-Dobrova Z, Panelli D, Signorile A, Scacco S, Petruzzella V et al (2011) Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 586(5):568–576. doi:10.1016/j.febslet.2011.09.019. http://www.ncbi.nlm.nih.gov/pubmed/21945319

  236. Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J et al (2009) A heteroplasmic, not homoplasmic, mitochondrial dna mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18(9):1578–1589. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2733816&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  237. Parlo RA, Coleman PS (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs Cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 259(16):9997–10003. http://www.ncbi.nlm.nih.gov/pubmed/6469976

  238. Pedersen PL (2007) The cancer cell’s ‘power plants’ as promising therapeutic targets: an overview. J Bioenerg Biomembr 39(1):1–12. doi:10.1007/s10863–007-9070–5. http://www.ncbi.nlm.nih.gov/pubmed/17404823

    Google Scholar 

  239. Pereira GC, Branco AF, Matos JAC, Pereira SL, Parke D, Perkins EL, Serafim TL et al (2007) Mitochondrially targeted effects of berberine [natural yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 mouse melanoma cells: comparison with direct effects on isolated mitochondrial fractions. J Pharmacol Exp Ther 323(2):636–649. http://www.ncbi.nlm.nih.gov/pubmed/17704354

    Google Scholar 

  240. Pereira CV, Machado NG, Oliveira PJ (2008) Mechanisms of berberine (natural Yellow 18)-induced mitochondrial dysfunction: interaction with the adenine nucleotide translocator. Toxicol Sci 105(2):408–417. http://www.ncbi.nlm.nih.gov/pubmed/18599498

    Google Scholar 

  241. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S et al (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102(3):719–724. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=545582&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  242. Pistollato F, Abbadi S, Rampazzo E, Persano L, Puppa AD, Frasson C, Sarto E, Scienza R, D’avella D, Basso G (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28(5):851–862. http://www.ncbi.nlm.nih.gov/pubmed/20309962

    Google Scholar 

  243. Plescia J, Salz W, Xia F, Pennati M, Zaffaroni N, Daidone MG, Meli M et al (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7(5):457–468. http://www.ncbi.nlm.nih.gov/pubmed/15894266

    Google Scholar 

  244. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12(3):159–169. doi:10.1038/nrc3215. http://www.ncbi.nlm.nih.gov/pubmed/22337149

    Google Scholar 

  245. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25(1):30–38. http://www.ncbi.nlm.nih.gov/pubmed/19054589

    Google Scholar 

  246. Porstmann T, Griffiths B, Chung Y-L, Delpuech O, Griffiths JR, Downward J, Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43):6465–6481. http://www.ncbi.nlm.nih.gov/pubmed/16007182

    Google Scholar 

  247. Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A (2009) A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 37(Pt 1):278–283. http://www.ncbi.nlm.nih.gov/pubmed/19143646

    Google Scholar 

  248. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350. doi:10.1038/nature10350. http://www.nature.com/doifinder/10.1038/nature10350

    Google Scholar 

  249. Prasad KN, Edwards-Prasad J (1982) Effects of tocopherol (vitamin E) acid succinate on morphological alterations and growth inhibition in melanoma cells in culture. Cancer Res 42(2):550–555. doi:0008–5472/82/0042-OOOOS02.00. http://www.ncbi.nlm.nih.gov/pubmed/6275980

  250. Preuss M, Girnun GD, Darby CJ, Khoo N, Spector AA, Robbins ME (2000) Role of antioxidant enzyme expression in the selective cytotoxic response of glioma cells to gamma-linolenic acid supplementation. Free Radic Biol Med 28(7):1143–1156. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10832077

  251. Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR, Grammatico P (2008) Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res Treat 110(3):439–452. http://www.ncbi.nlm.nih.gov/pubmed/17899367

    Google Scholar 

  252. Raimundo N, Baysal BE, Shadel GS (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med 17(11):641–649. doi:10.1016/j.molmed.2011.06.001. http://www.ncbi.nlm.nih.gov/pubmed/21764377

    Google Scholar 

  253. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Moreno-Sánchez R (2010) bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 31(1):29–59. http://www.ncbi.nlm.nih.gov/pubmed/20026172

  254. Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A 102(17):5992–5997. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1087961&tool=pmcentrez&rendertype=abstract

  255. Ramjaun AR, Downward J (2007) Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle Georgetown Tex 6(23):2902–2905. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17993782

  256. Ren J, Xiao Y, Singh LS, Zhao X, Zhao Z, Feng L, Rose TM, Prestwich GD, Xu Y (2006) Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res 66(6):3006–3014. http://www.ncbi.nlm.nih.gov/pubmed/16540649

    Google Scholar 

  257. Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, Gustafsson ÅB (2011) Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 18(4):721–731. http://www.ncbi.nlm.nih.gov/pubmed/21278801

    Google Scholar 

  258. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25(34):4683–4696. http://www.ncbi.nlm.nih.gov/pubmed/16892082

    Google Scholar 

  259. Rodríguez-Enríquez S, Gallardo-Pérez JC, Avilés-Salas A, Marín-Hernández A, Carreño-Fuentes L, Maldonado-Lagunas V, Moreno-Sánchez R (2008) Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol 216(1):189–197. http://www.ncbi.nlm.nih.gov/pubmed/18264981

    Google Scholar 

  260. Rossier MF. (2006) T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium 40(2):155–164. http://www.ncbi.nlm.nih.gov/pubmed/16759697

    Google Scholar 

  261. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64(3):985–993. doi:10.1158/0008–5472.CAN-03–1101. http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008–5472.CAN-03–1101

    Google Scholar 

  262. Ruan K, Song G, Ouyang G (2009) Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107(6):1053–1062. http://www.ncbi.nlm.nih.gov/pubmed/19479945

    Google Scholar 

  263. Samoszuk MK, Walter J, Mechetner E (2004) Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J Histochem Cytochem 52(6):837–839. http://jhc.sagepub.com/lookup/doi/10.1369/jhc.4B6248.2004

    Google Scholar 

  264. Sánchez-Cenizo L, Formentini L, Aldea M, Ortega ÁlvaroD, García-Huerta P, Sánchez-Aragó M, Cuezva JM (2010) Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+ -ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 285(33):25308–25313.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2919093&tool=pmcentrez&rendertype=abstract

  265. Santandreu FM, Valle A, De SF, Roca P, Oliver J (2009) Cellular physiology biochemistry and biochemistry hydrogen peroxide regulates the mitochondrial content of uncoupling protein 5 in colon cancer cells. Cell Physiol Biochem 24:379–390

    Google Scholar 

  266. Sasaki R, Suzuki Y, Yonezawa Y, Ota Y, Okamoto Y, Demizu Y, Huang P, Yoshida H, Sugimura K, Mizushina Y (2008) DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells. Cancer Sci 99(5):1040–1048. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18312466

    Google Scholar 

  267. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor P53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633. http://cancerres.aacrjournals.org/cgi/doi/10.1158/00085472.CAN-030846

    Google Scholar 

  268. Segal-Bendirdjian E, Coulaud D, Roques BP, Le Pecq JB (1988) Selective loss of mitochondrial DNA after treatment of cells with ditercalinium (NSC 335153), an antitumor bis-intercalating agent. Cancer Res 48(17):4982–4992

    CAS  PubMed  Google Scholar 

  269. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7: 77–85. http://dx.doi.org/10.1016/j.ccr.2004.11.022

    Google Scholar 

  270. Semenza GL (2007) HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr 39(3):231–234. http://www.ncbi.nlm.nih.gov/pubmed/17551816

    Google Scholar 

  271. Sen N, Satija YK, Das S (2011) PGC-1α, a key modulator of P53, promotes cell survival upon metabolic stress. Molecular Cell 44(4):621–634. doi:10.1016/j.molcel.2011.08.044. http://linkinghub.elsevier.com/retrieve/pii/S1097276511008173

    Google Scholar 

  272. Serafim TL, Matos JAC, Sardão VA, Pereira GC, Branco AF, Pereira SL, Parke D et al (2008) Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells–nuclear vs. mitochondrial effects. Biochem Pharmacol 76(11):1459–1475. http://www.ncbi.nlm.nih.gov/pubmed/18692024.

    Google Scholar 

  273. Serafim TL, Oliveira PJ, Sardao VA, Perkins E, Parke D, Holy J (2008) Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemother Pharmacol 61(6):1007–1018. http://www.ncbi.nlm.nih.gov/pubmed/17661039

    Google Scholar 

  274. Sermeus A, Michiels C (2011) Reciprocal influence of the P53 and the hypoxic pathways. Cell Death Dis 2(5):e164. http://www.nature.com/doifinder/10.1038/cddis.2011.48

  275. Sheng H, Niu B, Sun H (2009) Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies. Curr Med Chem 16(13):1561–1587. http://www.ncbi.nlm.nih.gov/pubmed/19442134

    Google Scholar 

  276. Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S (2005) Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65(5):1655–1663. http://www.ncbi.nlm.nih.gov/pubmed/15753359

    Google Scholar 

  277. Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123(Pt 6):894–902. http://www.ncbi.nlm.nih.gov/pubmed/20159966

    Google Scholar 

  278. Siegelin MD, Plescia J, Raskett CM, Gilbert CA, Ross AH, Altieri DC (2010) Global targeting of subcellular heat shock protein-90 networks for therapy of glioblastoma. Mol Cancer Ther 9(6):1638–1646. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2884083&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  279. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J, Bouvier R, Schägger H, Godinot C (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23(5):759–768. http://www.ncbi.nlm.nih.gov/pubmed/12016148

    Google Scholar 

  280. Skala MC, Fontanella A, Lan L, Izatt JA, Dewhirst MW (2010) Longitudinal optical imaging of tumor metabolism and hemodynamics. J Biomed Opt 15(1):011112. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2816992&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  281. Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, Spitz DR (2006) Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res 66(15):7615–7620. doi:10.1158/0008–5472.CAN-06–0833. http://www.ncbi.nlm.nih.gov/pubmed/16885361

    Google Scholar 

  282. Sokolosky ML, Wargovich MJ (2012) Homeostatic imbalance and colon cancer: the dynamic epigenetic interplay of inflammation, environmental toxins, and chemopreventive plant compounds. Front Oncol 2:57. doi:10.3389/fonc.2012.00057. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3365481&tool=pmcentrez&rendertype=abstract

  283. Solaini G, Sgarbi G, Baracca A (2011) Oxidative phosphorylation in cancer cells. Biochim Biophys Acta 1807(6):534–542. http://www.ncbi.nlm.nih.gov/pubmed/20849810

    Google Scholar 

  284. St-Pierre J, Brand MD, Boutilier RG (2000) Mitochondria as ATP consumers: cellular treason in anoxia. Proc Natl Acad Sci U S A 97(15):8670–8674. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=27006&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  285. Stockwin LH, Yu SX, Borgel S, Hancock C, Wolfe TL, Phillips LR, Hollingshead MG, Newton DL (2010) Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int J Cancer 127(11):2510–2519. doi:10.1002/ijc.25499. http://www.ncbi.nlm.nih.gov/pubmed/20533281

    Google Scholar 

  286. Stubbs M, Rodrigues L, Howe FA, Wang J, Jeong K, Veech RL, Griffiths JI (1994) Metabolic consequences of a reversed pH gradient in rat tumors. Cancer Res 54:4011–4016

    Google Scholar 

  287. Stuelten CH, Barbul A, Busch JI, Sutton E, Katz R, Sato M, Wakefield LM, Roberts AB, Niederhuber JE (2008) Acute wounds accelerate tumorigenesis by a T cell-dependent mechanism. Cancer Res 68(18):7278–7282. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2766858&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  288. Suhane S, Berel D, Ramanujan VK (2011) Biomarker signatures of mitochondrial NDUFS3 in invasive breast carcinoma. Biochem Biophys Res Commun 412(4):590–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Sun AS, Cederbaum AI (1980) Oxidoreductase activities in normal rat liver, tumor-bearing rat liver, and hepatoma HC-252. Cancer Res 40(12):4677–4681

    CAS  PubMed  Google Scholar 

  290. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9(4):358–365. http://www.ncbi.nlm.nih.gov/pubmed/16778563

    Google Scholar 

  291. Taddei ML, Giannoni E, Raugei G, Scacco S, Sardanelli AM, Papa S, Chiarugi P (2012) Mitochondrial oxidative stress due to complex I dysfunction promotes fibroblast activation and melanoma cell invasiveness. J Signal Transduct 2012:684592. doi:10.1155/2012/684592. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3261495&tool=pmcentrez&rendertype=abstract

  292. Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, Sugihara E et al (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72(6):1438–1448. doi:10.1158/0008–5472.CAN-11–3024. http://www.ncbi.nlm.nih.gov/pubmed/22293754

    Google Scholar 

  293. Tan D-J, Bai R-K, Wong L-J (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62(4):972–976. http://www.ncbi.nlm.nih.gov/pubmed/11861366

    Google Scholar 

  294. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373–4384. http://www.ncbi.nlm.nih.gov/pubmed/2545340

    Google Scholar 

  295. Tao R, Coleman MC, Pennington JD, Ozden O, Park S-H, Jiang H, Kim H-S et al (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40(6):893–904. http://www.ncbi.nlm.nih.gov/pubmed/21172655

    Google Scholar 

  296. Taubes G (2012) Cancer research. Cancer prevention with a diabetes pill? Science 335(6064):29. doi:10.1126/science.335.6064.29. http://www.ncbi.nlm.nih.gov/pubmed/22223788

    Google Scholar 

  297. Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409(1):19–26. http://www.ncbi.nlm.nih.gov/pubmed/18062771

    Google Scholar 

  298. Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M et al (2010) Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med 2(6):211–230. http://www.ncbi.nlm.nih.gov/pubmed/20535745

    Google Scholar 

  299. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. http://www.ncbi.nlm.nih.gov/pubmed/19478820

    Google Scholar 

  300. Tsujio I, Tanaka T, Kudo T, Nishikawa T, Shinozaki K, Grundke-Iqbal I, Iqbal K, Takeda M (2000) Inactivation of glycogen synthase kinase-3 by protein kinase C delta: implications for regulation of tau phosphorylation. FEBS Lett 469(1):111–117. http://www.ncbi.nlm.nih.gov/pubmed/10708767

    Google Scholar 

  301. Vander H Matthew G, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. http://www.ncbi.nlm.nih.gov/pubmed/19460998

    Google Scholar 

  302. Vander H, Matthew G, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499. doi:10.1126/science.1188015. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3030121&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  303. Van De Parre TJ, Martinet W, Verheye S, Kockx MM, Van Langenhove G, Herman AG, De Meyer GR (2008) Mitochondrial uncoupling protein 2 mediates temperature heterogeneity in atherosclerotic plaques. Cardiovasc Res 77(2):425–431. http://www.ncbi.nlm.nih.gov/pubmed/18006489

    Google Scholar 

  304. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465. http://www.ncbi.nlm.nih.gov/pubmed/2684393

    Google Scholar 

  305. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent P53 deacetylase. Cell 107(2):149–159. http://www.ncbi.nlm.nih.gov/pubmed/11672523

    Google Scholar 

  306. Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem79(2):266–277. http://www.ncbi.nlm.nih.gov/pubmed/11677254

  307. Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32(12):1377–1382. http://www.ncbi.nlm.nih.gov/pubmed/15333514

    Google Scholar 

  308. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882. doi:10.1016/j.immuni.2011.09.021. http://linkinghub.elsevier.com/retrieve/pii/S1074761311005152

    Google Scholar 

  309. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2140820&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  310. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21(3):297–308. doi:10.1016/j.ccr.2012.02.014. http://linkinghub.elsevier.com/retrieve/pii/S1535610812000785

    Google Scholar 

  311. Weinberg RA (2007) A multi-step model for the development of colorectal cancer. The biology of cancer. Garland Science, New York

    Google Scholar 

  312. Weisberg EL, Koya K, Modica-Napolitano J, Li Y, Chen LB (1996) In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res 56(3):551–555

    CAS  PubMed  Google Scholar 

  313. Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD, Chen LB (1987) Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc Natl Acad Sci U S A 84(15):5444–5448. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=298874&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  314. D’Souza Gerard GM, Weissig V (2010) Chapter I. An introduction to subcellular nanomedicine: current trends and future developments. Organelle‐specific pharmaceutical nanotechnology. Wiley.

    Google Scholar 

  315. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2746744&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  316. Wenzel U, Nickel A, Daniel H (2005) Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis. J Nutr 135(6):1510–1514

    CAS  PubMed  Google Scholar 

  317. Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S et al (2011) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle Georgetown Tex 10(23):4047–4064. doi:10.4161/cc.10.23.18151. http://www.ncbi.nlm.nih.gov/pubmed/22134189

  318. Wu C-H, Van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci U S A 104(32):13028–13033. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1941831&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  319. Yang Y-A, Han WF, Morin PJ, Chrest FJ, Pizer ES (2002) Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp Cell Res 279(1):80–90. http://www.ncbi.nlm.nih.gov/pubmed/11716532

    Google Scholar 

  320. Yotnda P, Wu D, Swanson AM (2010) Hypoxic tumors and their effect on immune cells and cancer therapy. Methods Mol Biol 651:1–29. http://www.ncbi.nlm.nih.gov/pubmed/20686957

  321. Yu W, Sanders BG, Kline K (2003) RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells involves bax translocation to mitochondria. Cancer Res 63(10):2483–2491. http://www.ncbi.nlm.nih.gov/pubmed/12750270

    Google Scholar 

  322. Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 2(17):14078–14086. doi:10.1074/jbc.M112.355206. http://www.ncbi.nlm.nih.gov/pubmed/22416140

    Google Scholar 

  323. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi:10.1038/onc.2008.245. http://www.ncbi.nlm.nih.gov/pubmed/18794884

    Google Scholar 

  324. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178(1):93–105. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2064426&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  325. Yusnita Y, Norsiah MD, Rahman AJ (2010) Mutations in mitochondrial NADH dehydrogenase subunit 1 (mtND1) gene in colorectal carcinoma. Malays J Pathol 32(2):103–110. http://www.ncbi.nlm.nih.gov/pubmed/21329181

    Google Scholar 

  326. Zhang T, Chen G, Wang Z, Wang Z, Chen S, Chen Z (2001) Arsenic trioxide, a therapeutic agent for APL. Oncogene 20:7146–7153

    Google Scholar 

  327. Zhang J, Frerman FE, Kim J-JP (2006) Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci U S A 103(44):16212–16217. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1637562&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  328. Zhang E, Zhang C, Su Y, Cheng T, Shi C (2011) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16(3–4):140–146. http://www.ncbi.nlm.nih.gov/pubmed/21182981

  329. Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC (2008) Glucose metabolism attenuates P53 and puma-dependent cell death upon growth factor deprivation. J Biol Chem 283(52):36344–36353. doi:10.1074/jbc.M803580200. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2606014&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  330. Zhuang D, Mannava S, Grachtchouk V, Tang W-H, Patil S, Wawrzyniak JA, Berman AE et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27(52):6623–6634. http://www.ncbi.nlm.nih.gov/pubmed/18679422

    Google Scholar 

  331. Zimmermann FA, Mayr JA, Feichtinger R, Neureiter D, Lechner R, Koegler C, Ratschek M et al (2011) Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. BioScience 3(4):315–325. http://www.ncbi.nlm.nih.gov/pubmed/21196312

    Google Scholar 

  332. Zini R, Morin C, Bertelli A, Bertelli AA, Tillement JP (1999) Effects of resveratrol on the rat brain respiratory chain. Drugs Exp Clin Res 25(2–3):87–97. http://www.ncbi.nlm.nih.gov/pubmed/10370869

    Google Scholar 

  333. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. http://www.ncbi.nlm.nih.gov/pubmed/21157483

    Google Scholar 

  334. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313(3):459–465. http://linkinghub.elsevier.com/retrieve/pii/S0006291X0302504X

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Alexandra Holy for English proofreading this manuscript. Research in the authors’ laboratory is funded by the Foundation for Science and Technology, Portugal (grants PTDC/QUI‐QUI/101409/2008, PTDC/QUIBIQ/101052/2008 and PEst‐C/SAU/LA0001/2013‐2014, co‐sponsored by FEDER/Compete and National funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Serafim, T., Oliveira, P. (2014). Regulating Mitochondrial Respiration in Cancer. In: Kanner, S. (eds) Tumor Metabolome Targeting and Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9545-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9545-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9544-4

  • Online ISBN: 978-1-4614-9545-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics