Skip to main content

Best Approximation

  • Chapter
  • 1102 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 34))

Abstract

In Chap. 7 we study best approximation problems in a general Banach space. It is well known that best approximation problems have solutions only under certain assumptions on the space X. In view of the Lau-Konjagin result these assumptions cannot be removed. On the other hand, many generic results in nonlinear functional analysis hold in any Banach space. Therefore the following natural question arises: can generic results for best approximation problems be obtained in general Banach spaces? In this chapter we answer this question in the affirmative. To this end, we consider a new framework. The main feature of this new framework is that a best approximation problem is determined by a pair consisting of a point and a closed (convex) subset of a Banach space. We consider the complete metric space of such pairs equipped with a natural complete metric and show that for most (in the sense of Baire category) pairs the corresponding best approximation problem has a unique solution. We also provide some generalizations and extensions of this result.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cobzas, S. (2000). Journal of Mathematical Analysis and Applications, 243, 344–356.

    Article  MathSciNet  MATH  Google Scholar 

  2. de Blasi, F. S., & Myjak, J. (1998). Journal of Approximation Theory, 94, 54–72.

    Article  MathSciNet  MATH  Google Scholar 

  3. de Blasi, F. S., Myjak, J., & Papini, P. L. (1991). Journal of the London Mathematical Society, 44, 135–142.

    Article  MATH  Google Scholar 

  4. Edelstein, M. (1968). Journal of the London Mathematical Society, 43, 375–377.

    Article  MathSciNet  MATH  Google Scholar 

  5. Konjagin, S. V. (1978). Soviet Mathematics. Doklady, 19, 309–312.

    Google Scholar 

  6. Kuratowski, C., & Ulam, S. (1932). Fundamenta Mathematicae, 19, 248–251.

    Google Scholar 

  7. Lau, K. S. (1978). Indiana University Mathematics Journal, 27, 791–795.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, C. (2000). Journal of Approximation Theory, 107, 96–108.

    Article  MathSciNet  MATH  Google Scholar 

  9. Reich, S., & Zaslavski, A. J. (2001). Topological Methods in Nonlinear Analysis, 18, 395–408.

    MathSciNet  MATH  Google Scholar 

  10. Reich, S., & Zaslavski, A. J. (2002). Nonlinear Functional Analysis and Applications, 7, 115–128.

    MathSciNet  MATH  Google Scholar 

  11. Reich, S., & Zaslavski, A. J. (2003). Journal of Nonlinear and Convex Analysis, 4, 165–173.

    MathSciNet  MATH  Google Scholar 

  12. Reich, S., & Zaslavski, A. J. (2004). Nonlinear Analysis Forum, 9, 135–152.

    MathSciNet  MATH  Google Scholar 

  13. Stechkin, S. B. (1963). Revue Roumaine de Mathématiques Pures Et Appliquées, 8, 5–13.

    MATH  Google Scholar 

  14. Zaslavski, A. J. (2001). Calculus of Variations and Partial Differential Equations, 13, 265–293.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reich, S., Zaslavski, A.J. (2014). Best Approximation. In: Genericity in Nonlinear Analysis. Developments in Mathematics, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9533-8_7

Download citation

Publish with us

Policies and ethics