Sleep Disorders and Melatonin

  • Katherine A. Dudley
  • Sanjay R. Patel
Part of the Energy Balance and Cancer book series (EBAC, volume 8)


Melatonin is an endogenously produced neurohormone that plays a key role in the signaling of daily rhythms and the coordination of these rhythms with the external world. It serves as a marker of darkness and also modulates circadian phase, or timing, through feedback mechanisms on the intrinsic circadian rhythm generated by the suprachiasmatic nucleus. Melatonin and its metabolites can be readily measured in plasma, saliva, and urine. Measurement of melatonin profiles, particularly, the timing of the sharp rise in melatonin levels during the biological night, can be used to assess circadian phase which is useful in the diagnosis of sleep/circadian pathology as well as determining the optimal timing of treatment. Therapeutically, melatonin can be used to manipulate circadian phase and promote sleep in a circadian rhythm-dependent fashion. Randomized trials have demonstrated that exogenous melatonin can be of benefit in a number of sleep disease states including delayed sleep phase syndrome, non-24-hour sleep-wake syndrome, jet lag, and insomnia.


Melatonin Sleep Circadian rhythm Dim-light melatonin onset Pineal gland Circadian rhythm sleep disorders Phase response curve Advanced sleep phase syndrome Delayed sleep phase syndrome Non-24-hour sleep-wake syndrome Jet lag Insomnia 


  1. 1.
    Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res. 2000;28(4): 193–202.PubMedGoogle Scholar
  2. 2.
    Carrillo-Vico A, Lardone PJ, Fernandez-Santos JM, et al. Human lymphocyte-synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. J Clin Endocrinol Metab. 2005;90(2):992–1000.PubMedGoogle Scholar
  3. 3.
    Lovenberg W, Jequier E, Sjoerdsma A. Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science. 1967;155(3759):217–9.PubMedGoogle Scholar
  4. 4.
    Axelrod J, Weissbach H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science. 1960;131(3409):1312.PubMedGoogle Scholar
  5. 5.
    Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284(5423):2177–81.PubMedGoogle Scholar
  6. 6.
    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–5.PubMedGoogle Scholar
  7. 7.
    Zeitzer JM, Ayas NT, Shea SA, Brown R, Czeisler CA. Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia. J Clin Endocrinol Metab. 2000;85(6):2189–96.PubMedGoogle Scholar
  8. 8.
    Wurtman RJ, Shein HM, Larin F. Mediation by -adrenergic receptors of effect of norepinephrine on pineal synthesis of (14 C)serotonin and (14 C)melatonin. J Neurochem. 1971;18(9):1683–7.PubMedGoogle Scholar
  9. 9.
    Kachi T. Demonstration of circadian rhythm in granular vesicle number in pinealocytes of mice and the effect of light: semi-quantitative electron microscopic study. J Anat. 1979;129(Pt 3):603–14.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Weiss B, Costa E. Adenyl cyclase activity in rat pineal gland: effects of chronic denervation and norepinephrine. Science. 1967;156(3783):1750–2.PubMedGoogle Scholar
  11. 11.
    Shein HM, Wurtman RJ. Cyclic adenosine monophosphate: stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science. 1969;166(3904):519–20.PubMedGoogle Scholar
  12. 12.
    Klein DC, Weller JL. Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science. 1970;169(3950):1093–5.PubMedGoogle Scholar
  13. 13.
    Klein DC, Berg GR, Weller J. Melatonin synthesis: adenosine 3′,5′-monophosphate and norepinephrine stimulate N-acetyltransferase. Science. 1970;168(3934):979–80.PubMedGoogle Scholar
  14. 14.
    Lynch HJ, Eng JP, Wurtman RJ. Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting. Proc Natl Acad Sci U S A. 1973;70(6):1704–7.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Dubocovich ML. Melatonin receptors: are there multiple subtypes? Trends Pharmacol Sci. 1995;16(2):50–6.PubMedGoogle Scholar
  16. 16.
    Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24(2):101–46.PubMedGoogle Scholar
  17. 17.
    Iguchi H, Kato KI, Ibayashi H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J Clin Endocrinol Metab. 1982;54(5):1025–7.PubMedGoogle Scholar
  18. 18.
    Lewy AJ, Sack RL. The dim light melatonin onset as a marker for circadian phase position. Chronobiol Int. 1989;6(1):93–102.PubMedGoogle Scholar
  19. 19.
    Gordijn MC, Beersma DG, Korte HJ, van den Hoofdakker RH. Effects of light exposure and sleep displacement on dim light melatonin onset. J Sleep Res. 1999;8(3):163–74.PubMedGoogle Scholar
  20. 20.
    Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol. 2003;284(3):R714–24.PubMedGoogle Scholar
  21. 21.
    Deacon S, Arendt J. Posture influences melatonin concentrations in plasma and saliva in humans. Neurosci Lett. 1994;167(1–2):191–4.PubMedGoogle Scholar
  22. 22.
    Murphy PJ, Myers BL, Badia P. Nonsteroidal anti-inflammatory drugs alter body temperature and suppress melatonin in humans. Physiol Behav. 1996;59(1):133–9.PubMedGoogle Scholar
  23. 23.
    Nathan PJ, Maguire KP, Burrows GD, Norman TR. The effect of atenolol, a beta1-adrenergic antagonist, on nocturnal plasma melatonin secretion: evidence for a dose–response relationship in humans. J Pineal Res. 1997;23(3):131–5.PubMedGoogle Scholar
  24. 24.
    Stoschitzky K, Sakotnik A, Lercher P, et al. Influence of beta-blockers on melatonin release. Eur J Clin Pharmacol. 1999;55(2):111–5.PubMedGoogle Scholar
  25. 25.
    Lewy AJ, Ahmed S, Jackson JM, Sack RL. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int. 1992;9(5):380–92.PubMedGoogle Scholar
  26. 26.
    Lewy AJ, Cutler NL, Sack RL. The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms. 1999;14(3):227–36.PubMedGoogle Scholar
  27. 27.
    Voultsios A, Kennaway DJ, Dawson D. Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin. J Biol Rhythms. 1997;12(5):457–66.PubMedGoogle Scholar
  28. 28.
    Burgess HJ, Sharkey KM, Eastman CI. Bright light, dark and melatonin can promote circadian adaptation in night shift workers. Sleep Med Rev. 2002;6(5):407–20.Google Scholar
  29. 29.
    Cagnacci A, Elliott JA, Yen SS. Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab. 1992;75(2):447–52.PubMedGoogle Scholar
  30. 30.
    Burgess HJ, Savic N, Sletten T, Roach G, Gilbert SS, Dawson D. The relationship between the dim light melatonin onset and sleep on a regular schedule in young healthy adults. Behav Sleep Med. 2003;1(2):102–14.PubMedGoogle Scholar
  31. 31.
    Deacon S, English J, Arendt J. Acute phase-shifting effects of melatonin associated with suppression of core body temperature in humans. Neurosci Lett. 1994;178(1):32–4.PubMedGoogle Scholar
  32. 32.
    Benloucif S, Guico MJ, Reid KJ, Wolfe LF, L’hermite-Baleriaux M, Zee PC. Stability of melatonin and temperature as circadian phase markers and their relation to sleep times in humans. J Biol Rhythms. 2005;20(2):178–88.PubMedGoogle Scholar
  33. 33.
    Middleton B. Measurement of melatonin and 6-sulphatoxymelatonin. Methods Mol Biol. 2006;324:235–54.PubMedGoogle Scholar
  34. 34.
    de Almeida EA, Di Mascio P, Harumi T, et al. Measurement of melatonin in body fluids: standards, protocols and procedures. Childs Nerv Syst. 2011;27(6):879–91.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Bojkowski CJ, Arendt J, Shih MC, Markey SP. Melatonin secretion in humans assessed by measuring its metabolite, 6-sulfatoxymelatonin. Clin Chem. 1987;33(8):1343–8.PubMedGoogle Scholar
  36. 36.
    Nowak R, McMillen IC, Redman J, Short RV. The correlation between serum and salivary melatonin concentrations and urinary 6-hydroxymelatonin sulphate excretion rates: two non-invasive techniques for monitoring human circadian rhythmicity. Clin Endocrinol (Oxf). 1987;27(4):445–52.Google Scholar
  37. 37.
    Laakso ML, Porkka-Heiskanen T, Alila A, Stenberg D, Johansson G. Correlation between salivary and serum melatonin: dependence on serum melatonin levels. J Pineal Res. 1990;9(1):39–50.PubMedGoogle Scholar
  38. 38.
    Lang U, Kornemark M, Aubert ML, Paunier L, Sizonenko PC. Radioimmunological determination of urinary melatonin in humans: correlation with plasma levels and typical 24-hour rhythmicity. J Clin Endocrinol Metab. 1981;53(3):645–50.PubMedGoogle Scholar
  39. 39.
    Markey SP, Higa S, Shih M, Danforth DN, Tamarkin L. The correlation between human plasma melatonin levels and urinary 6-hydroxymelatonin excretion. Clin Chim Acta. 1985;150(3):221–5.PubMedGoogle Scholar
  40. 40.
    Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci. 2003;8:d1093–108.PubMedGoogle Scholar
  41. 41.
    Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML. Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol. 2001;280(1):C110–8.PubMedGoogle Scholar
  42. 42.
    Liu C, Weaver DR, Jin X, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91–102.PubMedGoogle Scholar
  43. 43.
    Tzischinsky O, Lavie P. Melatonin possesses time-dependent hypnotic effects. Sleep. 1994;17(7): 638–45.PubMedGoogle Scholar
  44. 44.
    Rojansky N, Brzezinski A, Schenker JG. Seasonality in human reproduction: an update. Hum Reprod. 1992;7(6):735–45.PubMedGoogle Scholar
  45. 45.
    Silman R. Melatonin and the human gonadotropin-releasing hormone pulse generator. J Endocrinol. 1991;128(1):7–11.PubMedGoogle Scholar
  46. 46.
    Aleandri V, Spina V, Morini A. The pineal gland and reproduction. Hum Reprod Update. 1996;2(3):225–35.PubMedGoogle Scholar
  47. 47.
    Cagnacci A, Soldani R, Laughlin GA, Yen SS. Modification of circadian body temperature rhythm during the luteal menstrual phase: role of melatonin. J Appl Physiol. 1996;80(1):25–9.PubMedGoogle Scholar
  48. 48.
    Cagnacci A, Paoletti AM, Soldani R, Orru M, Maschio E, Melis GB. Melatonin enhances the luteinizing hormone and follicle-stimulating hormone responses to gonadotropin-releasing hormone in the follicular, but not in the luteal, menstrual phase. J Clin Endocrinol Metab. 1995;80(4):1095–9.PubMedGoogle Scholar
  49. 49.
    Fernandez B, Malde JL, Montero A, Acuna D. Relationship between adenohypophyseal and steroid hormones and variations in serum and urinary melatonin levels during the ovarian cycle, perimenopause and menopause in healthy women. J Steroid Biochem. 1990;35(2): 257–62.PubMedGoogle Scholar
  50. 50.
    Delfs TM, Baars S, Fock C, Schumacher M, Olcese J, Zimmermann RC. Sex steroids do not alter melatonin secretion in the human. Hum Reprod. 1994;9(1):49–54.PubMedGoogle Scholar
  51. 51.
    Berga SL, Yen SS. Circadian pattern of plasma melatonin concentrations during four phases of the human menstrual cycle. Neuroendocrinology. 1990;51(5):606–12.PubMedGoogle Scholar
  52. 52.
    Brzezinski A, Lynch HJ, Seibel MM, Deng MH, Nader TM, Wurtman RJ. The circadian rhythm of plasma melatonin during the normal menstrual cycle and in amenorrheic women. J Clin Endocrinol Metab. 1988;66(5):891–5.PubMedGoogle Scholar
  53. 53.
    Berga SL, Mortola JF, Yen SS. Amplification of nocturnal melatonin secretion in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab. 1988;66(1):242–4.PubMedGoogle Scholar
  54. 54.
    Forsling ML, Wheeler MJ, Williams AJ. The effect of melatonin administration on pituitary hormone secretion in man. Clin Endocrinol (Oxf). 1999;51(5):637–42.Google Scholar
  55. 55.
    Petterborg LJ, Thalen BE, Kjellman BF, Wetterberg L. Effect of melatonin replacement on serum hormone rhythms in a patient lacking endogenous melatonin. Brain Res Bull. 1991;27(2):181–5.PubMedGoogle Scholar
  56. 56.
    Peschke E, Muhlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab. 2010;24(5):829–41.PubMedGoogle Scholar
  57. 57.
    Peschke E, Schucht H, Muhlbauer E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both wistar and type 2-diabetic goto-kakizaki rats. J Pineal Res. 2010;49(4):373–81.PubMedGoogle Scholar
  58. 58.
    Xia Q, Chen ZX, Wang YC, et al. Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: a meta-analysis. PLoS One. 2012;7(11):e50107.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Dietrich K, Birkmeier S, Schleinitz D, et al. Association and evolutionary studies of the melatonin receptor 1B gene (MTNR1B) in the self-contained population of Sorbs from Germany. Diabet Med. 2011;28(11):1373–80.PubMedGoogle Scholar
  60. 60.
    Gonzalez-Haba MG, Garcia-Maurino S, Calvo JR, Goberna R, Guerrero JM. High-affinity binding of melatonin by human circulating T lymphocytes (CD4+). FASEB J. 1995;9(13): 1331–5.PubMedGoogle Scholar
  61. 61.
    Pioli C, Caroleo MC, Nistico G, Doria G. Melatonin increases antigen presentation and amplifies specific and non specific signals for T-cell proliferation. Int J Immunopharmacol. 1993;15(4):463–8.PubMedGoogle Scholar
  62. 62.
    Raghavendra V, Singh V, Shaji AV, Vohra H, Kulkarni SK, Agrewala JN. Melatonin provides signal 3 to unprimed CD4(+) T cells but failed to stimulate LPS primed B cells. Clin Exp Immunol. 2001;124(3):414–22.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, et al. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol. 1997;159(2):574–81.PubMedGoogle Scholar
  64. 64.
    Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, Goberna R, Guerrero JM. Involvement of nuclear binding sites for melatonin in the regulation of IL-2 and IL-6 production by human blood mononuclear cells. J Neuroimmunol. 1998;92(1–2):76–84.PubMedGoogle Scholar
  65. 65.
    Kuhlwein E, Irwin M. Melatonin modulation of lymphocyte proliferation and Th1/Th2 cytokine expression. J Neuroimmunol. 2001;117(1–2):51–7.PubMedGoogle Scholar
  66. 66.
    Currier NL, Sun LZ, Miller SC. Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity. J Neuroimmunol. 2000;104(2):101–8.PubMedGoogle Scholar
  67. 67.
    Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–46.PubMedGoogle Scholar
  68. 68.
    Poeggeler B, Reiter RJ, Tan DX, Chen LD, Manchester LC. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res. 1993;14(4):151–68.PubMedGoogle Scholar
  69. 69.
    Poeggeler B, Saarela S, Reiter RJ, et al. Melatonin–a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci. 1994;738:419–20.PubMedGoogle Scholar
  70. 70.
    Blask DE, Hill SM. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm Suppl. 1986;21:433–49.PubMedGoogle Scholar
  71. 71.
    Vijayalaxmi, Thomas Jr CR, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol. 2002;20(10):2575–601.PubMedGoogle Scholar
  72. 72.
    el-Domeiri AA, Das Gupta TK. Reversal by melatonin of the effect of pinealectomy on tumor growth. Cancer Res. 1973;33(11):2830–3.PubMedGoogle Scholar
  73. 73.
    El-Domeiri AA, Das Gupta TK. The influence of pineal ablation and administration of melatonin on growth and spread of hamster melanoma. J Surg Oncol. 1976;8(3):197–205.PubMedGoogle Scholar
  74. 74.
    Dauchy RT, Blask DE, Sauer LA, Brainard GC, Krause JA. Dim light during darkness stimulates tumor progression by enhancing tumor fatty acid uptake and metabolism. Cancer Lett. 1999;144(2):131–6.PubMedGoogle Scholar
  75. 75.
    Eck KM, Yuan L, Duffy L, et al. A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells. Br J Cancer. 1998;77(12):2129–37.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Bartsch C, Bartsch H. Melatonin in cancer patients and in tumor-bearing animals. Adv Exp Med Biol. 1999;467:247–64.PubMedGoogle Scholar
  77. 77.
    Czeisler CA, Kronauer RE, Allan JS, et al. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science. 1989;244(4910):1328–33.PubMedGoogle Scholar
  78. 78.
    Minors DS, Waterhouse JM, Wirz-Justice A. A human phase-response curve to light. Neurosci Lett. 1991;133(1):36–40.PubMedGoogle Scholar
  79. 79.
    Lewy AJ, Bauer VK, Ahmed S, et al. The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int. 1998;15(1):71–83.PubMedGoogle Scholar
  80. 80.
    Chang AM, Santhi N, St Hilaire M, et al. Human responses to bright light of different durations. J Physiol. 2012;590(Pt 13):3103–12.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Ruger M, St Hilaire MA, Brainard GC, et al. Human phase response curve to a single 6.5 h pulse of short-wavelength light. J Physiol. 2013;591(Pt 1):353–63.PubMedGoogle Scholar
  82. 82.
    American Academy of Sleep Medicine. The international classification of sleep disorders: diagnostic & coding manual. 2nd ed. Westchester: American Academy of Sleep Medicine; 2005.Google Scholar
  83. 83.
    Cooke JR, Ancoli-Israel S. Sleep and its disorders in older adults. Psychiatr Clin North Am. 2006;29(4):1077–93. abstract x–xi.PubMedGoogle Scholar
  84. 84.
    Jones CR, Campbell SS, Zone SE, et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med. 1999;5(9):1062–5.PubMedGoogle Scholar
  85. 85.
    Satoh K, Mishima K, Inoue Y, Ebisawa T, Shimizu T. Two pedigrees of familial advanced sleep phase syndrome in Japan. Sleep. 2003;26(4):416–7.PubMedGoogle Scholar
  86. 86.
    Chesson Jr AL, Littner M, Davila D, et al. Practice parameters for the use of light therapy in the treatment of sleep disorders. Standards of Practice Committee, American Academy of Sleep Medicine. Sleep. 1999;22(5):641–60.PubMedGoogle Scholar
  87. 87.
    Weibel L, Rettori MC, Lesieur D, Delagrange P, Renard P, Van Reeth O. A single oral dose of S 22153, a melatonin antagonist, blocks the phase advancing effects of melatonin in C3H mice. Brain Res. 1999;829(1–2):160–6.PubMedGoogle Scholar
  88. 88.
    Ozaki S, Uchiyama M, Shirakawa S, Okawa M. Prolonged interval from body temperature nadir to sleep offset in patients with delayed sleep phase syndrome. Sleep. 1996;19(1): 36–40.PubMedGoogle Scholar
  89. 89.
    Regestein QR, Monk TH. Delayed sleep phase syndrome: a review of its clinical aspects. Am J Psychiatry. 1995;152(4):602–8.PubMedGoogle Scholar
  90. 90.
    Aoki H, Ozeki Y, Yamada N. Hypersensitivity of melatonin suppression in response to light in patients with delayed sleep phase syndrome. Chronobiol Int. 2001;18(2):263–71.PubMedGoogle Scholar
  91. 91.
    Nagtegaal E, Peeters T, Swart W, Smits M, Kerkhof G, van der Meer G. Correlation between concentrations of melatonin in saliva and serum in patients with delayed sleep phase syndrome. Ther Drug Monit. 1998;20(2):181–3.PubMedGoogle Scholar
  92. 92.
    Wyatt JK, Stepanski EJ, Kirkby J. Circadian phase in delayed sleep phase syndrome: predictors and temporal stability across multiple assessments. Sleep. 2006;29(8):1075–80.PubMedGoogle Scholar
  93. 93.
    Rahman SA, Kayumov L, Tchmoutina EA, Shapiro CM. Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome. Sleep Med. 2009;10(5):549–55.PubMedGoogle Scholar
  94. 94.
    Dahlitz M, Alvarez B, Vignau J, English J, Arendt J, Parkes JD. Delayed sleep phase syndrome response to melatonin. Lancet. 1991;337(8750):1121–4.PubMedGoogle Scholar
  95. 95.
    Nagtegaal JE, Kerkhof GA, Smits MG, Swart AC, Van Der Meer YG. Delayed sleep phase syndrome: a placebo-controlled cross-over study on the effects of melatonin administered five hours before the individual dim light melatonin onset. J Sleep Res. 1998;7(2):135–43.PubMedGoogle Scholar
  96. 96.
    Kayumov L, Brown G, Jindal R, Buttoo K, Shapiro CM. A randomized, double-blind, placebo-controlled crossover study of the effect of exogenous melatonin on delayed sleep phase syndrome. Psychosom Med. 2001;63(1):40–8.PubMedGoogle Scholar
  97. 97.
    Wasdell MB, Jan JE, Bomben MM, et al. A randomized, placebo-controlled trial of controlled release melatonin treatment of delayed sleep phase syndrome and impaired sleep maintenance in children with neurodevelopmental disabilities. J Pineal Res. 2008;44(1):57–64.PubMedGoogle Scholar
  98. 98.
    Nagtegaal JE, Laurant MW, Kerkhof GA, Smits MG, van der Meer YG, Coenen AM. Effects of melatonin on the quality of life in patients with delayed sleep phase syndrome. J Psychosom Res. 2000;48(1):45–50.PubMedGoogle Scholar
  99. 99.
    Mundey K, Benloucif S, Harsanyi K, Dubocovich ML, Zee PC. Phase-dependent treatment of delayed sleep phase syndrome with melatonin. Sleep. 2005;28(10):1271–8.PubMedGoogle Scholar
  100. 100.
    Oldani A, Ferini-Strambi L, Zucconi M, Stankov B, Fraschini F, Smirne S. Melatonin and delayed sleep phase syndrome: ambulatory polygraphic evaluation. Neuroreport. 1994;6(1):132–4.PubMedGoogle Scholar
  101. 101.
    Richardson GS, Zee PC, Wang-Weigand S, Rodriguez L, Peng X. Circadian phase-shifting effects of repeated ramelteon administration in healthy adults. J Clin Sleep Med. 2008;4(5):456–61.PubMedCentralPubMedGoogle Scholar
  102. 102.
    McArthur AJ, Lewy AJ, Sack RL. Non-24-hour sleep-wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep. 1996;19(7):544–53.PubMedGoogle Scholar
  103. 103.
    Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab. 1992;75(1):127–34.PubMedGoogle Scholar
  104. 104.
    Lockley SW, Skene DJ, Butler LJ, Arendt J. Sleep and activity rhythms are related to circadian phase in the blind. Sleep. 1999;22(5):616–23.PubMedGoogle Scholar
  105. 105.
    Hack LM, Lockley SW, Arendt J, Skene DJ. The effects of low-dose 0.5-mg melatonin on the free-running circadian rhythms of blind subjects. J Biol Rhythms. 2003;18(5):420–9.PubMedGoogle Scholar
  106. 106.
    Lockley SW, Skene DJ, James K, Thapan K, Wright J, Arendt J. Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol. 2000;164(1):R1–6.PubMedGoogle Scholar
  107. 107.
    Lewy AJ, Bauer VK, Hasler BP, Kendall AR, Pires ML, Sack RL. Capturing the circadian rhythms of free-running blind people with 0.5 mg melatonin. Brain Res. 2001;918(1–2): 96–100.PubMedGoogle Scholar
  108. 108.
    Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 2000;343(15):1070–7.PubMedGoogle Scholar
  109. 109.
    Wagner DR. Disorders of the circadian sleep-wake cycle. Neurol Clin. 1996;14(3):651–70.PubMedGoogle Scholar
  110. 110.
    Presser HB. Job, family, and gender: determinants of nonstandard work schedules among employed americans in 1991. Demography. 1995;32(4):577–98.PubMedGoogle Scholar
  111. 111.
    Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep. 2004;27(8):1453–62.PubMedGoogle Scholar
  112. 112.
    Dawson D, Campbell SS. Timed exposure to bright light improves sleep and alertness during simulated night shifts. Sleep. 1991;14(6):511–6.PubMedGoogle Scholar
  113. 113.
    Gumenyuk V, Roth T, Drake CL. Circadian phase, sleepiness, and light exposure assessment in night workers with and without shift work disorder. Chronobiol Int. 2012;29(7):928–36.PubMedGoogle Scholar
  114. 114.
    Folkard S, Arendt J, Clark M. Can melatonin improve shift workers’ tolerance of the night shift? Some preliminary findings. Chronobiol Int. 1993;10(5):315–20.PubMedGoogle Scholar
  115. 115.
    Yoon IY, Song BG. Role of morning melatonin administration and attenuation of sunlight exposure in improving adaptation of night-shift workers. Chronobiol Int. 2002;19(5): 903–13.PubMedGoogle Scholar
  116. 116.
    Markwald RR, Lee-Chiong TL, Burke TM, Snider JA, Wright Jr KP. Effects of the melatonin MT-1/MT-2 agonist ramelteon on daytime body temperature and sleep. Sleep. 2010;33(6): 825–31.PubMedCentralPubMedGoogle Scholar
  117. 117.
    James M, Tremea MO, Jones JS, Krohmer JR. Can melatonin improve adaptation to night shift? Am J Emerg Med. 1998;16(4):367–70.PubMedGoogle Scholar
  118. 118.
    Jorgensen KM, Witting MD. Does exogenous melatonin improve day sleep or night alertness in emergency physicians working night shifts? Ann Emerg Med. 1998;31(6):699–704.PubMedGoogle Scholar
  119. 119.
    Cohen DA, Wang W, Klerman EB, Rajaratnam SM. Ramelteon prior to a short evening nap impairs neurobehavioral performance for up to 12 hours after awakening. J Clin Sleep Med. 2010;6(6):565–71.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Tresguerres JA, Ariznavarreta C, Granados B, et al. Circadian urinary 6-sulphatoxymelatonin, cortisol excretion and locomotor activity in airline pilots during transmeridian flights. J Pineal Res. 2001;31(1):16–22.PubMedGoogle Scholar
  121. 121.
    Pfeffer M, Rauch A, Korf HW, von Gall C. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol Int. 2012;29(4):415–29.PubMedGoogle Scholar
  122. 122.
    Petrie K, Conaglen JV, Thompson L, Chamberlain K. Effect of melatonin on jet lag after long haul flights. BMJ. 1989;298(6675):705–7.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Claustrat B, Brun J, David M, Sassolas G, Chazot G. Melatonin and jet lag: confirmatory result using a simplified protocol. Biol Psychiatry. 1992;32(8):705–11.PubMedGoogle Scholar
  124. 124.
    Suhner A, Schlagenhauf P, Hofer I, Johnson R, Tschopp A, Steffen R. Effectiveness and tolerability of melatonin and zolpidem for the alleviation of jet lag. Aviat Space Environ Med. 2001;72(7):638–46.PubMedGoogle Scholar
  125. 125.
    Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev. 2002;(2):CD001520.Google Scholar
  126. 126.
    Petrie K, Dawson AG, Thompson L, Brook R. A double-blind trial of melatonin as a treatment for jet lag in international cabin crew. Biol Psychiatry. 1993;33(7):526–30.PubMedGoogle Scholar
  127. 127.
    Suhner A, Schlagenhauf P, Johnson R, Tschopp A, Steffen R. Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiol Int. 1998;15(6):655–66.PubMedGoogle Scholar
  128. 128.
    Zee PC, Wang-Weigand S, Wright Jr KP, Peng X, Roth T. Effects of ramelteon on insomnia symptoms induced by rapid, eastward travel. Sleep Med. 2010;11(6):525–33.PubMedGoogle Scholar
  129. 129.
    Buysse DJ. Insomnia state of the science: an evolutionary, evidence-based assessment. Sleep. 2005;28(9):1045–6.PubMedGoogle Scholar
  130. 130.
    Riemann D, Klein T, Rodenbeck A, et al. Nocturnal cortisol and melatonin secretion in primary insomnia. Psychiatry Res. 2002;113(1–2):17–27.PubMedGoogle Scholar
  131. 131.
    Rodenbeck A, Hajak G. Neuroendocrine dysregulation in primary insomnia. Rev Neurol (Paris). 2001;157(11 Pt 2):S57–61.Google Scholar
  132. 132.
    Matsumoto M. The hypnotic effects of melatonin treatment on diurnal sleep in humans. Psychiatry Clin Neurosci. 1999;53(2):243–5.PubMedGoogle Scholar
  133. 133.
    Pires ML, Benedito-Silva AA, Pinto L, Souza L, Vismari L, Calil HM. Acute effects of low doses of melatonin on the sleep of young healthy subjects. J Pineal Res. 2001;31(4): 326–32.PubMedGoogle Scholar
  134. 134.
    Rommel T, Demisch L. Influence of chronic beta-adrenoreceptor blocker treatment on melatonin secretion and sleep quality in patients with essential hypertension. J Neural Transm Gen Sect. 1994;95(1):39–48.PubMedGoogle Scholar
  135. 135.
    Smits MG, van Stel HF, van der Heijden K, Meijer AM, Coenen AM, Kerkhof GA. Melatonin improves health status and sleep in children with idiopathic chronic sleep-onset insomnia: a randomized placebo-controlled trial. J Am Acad Child Adolesc Psychiatry. 2003;42(11): 1286–93.PubMedGoogle Scholar
  136. 136.
    Dodge NN, Wilson GA. Melatonin for treatment of sleep disorders in children with developmental disabilities. J Child Neurol. 2001;16(8):581–4.PubMedGoogle Scholar
  137. 137.
    Garfinkel D, Zorin M, Wainstein J, Matas Z, Laudon M, Zisapel N. Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: a randomized, double-blind, crossover study. Diabetes Metab Syndr Obes. 2011;4:307–13.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Brower KJ, Conroy DA, Kurth ME, Anderson BJ, Stein MD. Ramelteon and improved insomnia in alcohol-dependent patients: a case series. J Clin Sleep Med. 2011;7(3):274–5.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Wade AG, Ford I, Crawford G, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Curr Med Res Opin. 2007;23(10):2597–605.PubMedGoogle Scholar
  140. 140.
    Lemoine P, Wade AG, Katz A, Nir T, Zisapel N. Efficacy and safety of prolonged-release melatonin for insomnia in middle-aged and elderly patients with hypertension: a combined analysis of controlled clinical trials. Integr Blood Press Control. 2012;5:9–17.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Lemoine P, Nir T, Laudon M, Zisapel N. Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J Sleep Res. 2007;16(4):372–80.PubMedGoogle Scholar
  142. 142.
    Scheer FA, Morris CJ, Garcia JI, et al. Repeated melatonin supplementation improves sleep in hypertensive patients treated with beta-blockers: a randomized controlled trial. Sleep. 2012;35(10):1395–402.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Lyseng-Williamson KA. Melatonin prolonged release: in the treatment of insomnia in patients aged >/=55 years. Drugs Aging. 2012;29(11):911–23.PubMedGoogle Scholar
  144. 144.
    Almeida Montes LG, Ontiveros Uribe MP, Cortes Sotres J, Heinze Martin G. Treatment of primary insomnia with melatonin: a double-blind, placebo-controlled, crossover study. J Psychiatry Neurosci. 2003;28(3):191–6.PubMedGoogle Scholar
  145. 145.
    Baskett JJ, Broad JB, Wood PC, et al. Does melatonin improve sleep in older people? A randomised crossover trial. Age Ageing. 2003;32(2):164–70.PubMedGoogle Scholar
  146. 146.
    Wade AG, Crawford G, Ford I, et al. Prolonged release melatonin in the treatment of primary insomnia: evaluation of the age cut-off for short- and long-term response. Curr Med Res Opin. 2011;27(1):87–98.PubMedGoogle Scholar
  147. 147.
    Kato K, Hirai K, Nishiyama K, et al. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology. 2005;48(2):301–10.PubMedGoogle Scholar
  148. 148.
    Karim A, Tolbert D, Cao C. Disposition kinetics and tolerance of escalating single doses of ramelteon, a high-affinity MT1 and MT2 melatonin receptor agonist indicated for treatment of insomnia. J Clin Pharmacol. 2006;46(2):140–8.PubMedGoogle Scholar
  149. 149.
    Hirai K, Kita M, Ohta H, et al. Ramelteon (TAK-375) accelerates reentrainment of circadian rhythm after a phase advance of the light–dark cycle in rats. J Biol Rhythms. 2005;20(1): 27–37.PubMedGoogle Scholar
  150. 150.
    Roth T, Stubbs C, Walsh JK. Ramelteon (TAK-375), a selective MT1/MT2-receptor agonist, reduces latency to persistent sleep in a model of transient insomnia related to a novel sleep environment. Sleep. 2005;28(3):303–7.PubMedGoogle Scholar
  151. 151.
    Erman M, Seiden D, Zammit G, Sainati S, Zhang J. An efficacy, safety, and dose–response study of ramelteon in patients with chronic primary insomnia. Sleep Med. 2006;7(1):17–24.PubMedGoogle Scholar
  152. 152.
    Roth T, Seiden D, Wang-Weigand S, Zhang J. A 2-night, 3-period, crossover study of ramelteon’s efficacy and safety in older adults with chronic insomnia. Curr Med Res Opin. 2007;23(5):1005–14.PubMedGoogle Scholar
  153. 153.
    Uchiyama M, Hamamura M, Kuwano T, Nishiyama H, Nagata H, Uchimura N. Evaluation of subjective efficacy and safety of ramelteon in Japanese subjects with chronic insomnia. Sleep Med. 2011;12(2):119–26.PubMedGoogle Scholar
  154. 154.
    Kohsaka M, Kanemura T, Taniguchi M, et al. Efficacy and tolerability of ramelteon in a double-blind, placebo-controlled, crossover study in Japanese patients with chronic primary insomnia. Expert Rev Neurother. 2011;11(10):1389–97.PubMedGoogle Scholar
  155. 155.
    Roth T, Seiden D, Sainati S, Wang-Weigand S, Zhang J, Zee P. Effects of ramelteon on patient-reported sleep latency in older adults with chronic insomnia. Sleep Med. 2006;7(4):312–8.PubMedGoogle Scholar
  156. 156.
    Zammit G, Erman M, Wang-Weigand S, Sainati S, Zhang J, Roth T. Evaluation of the efficacy and safety of ramelteon in subjects with chronic insomnia. J Clin Sleep Med. 2007;3(5):495–504.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Mayer G, Wang-Weigand S, Roth-Schechter B, Lehmann R, Staner C, Partinen M. Efficacy and safety of 6-month nightly ramelteon administration in adults with chronic primary insomnia. Sleep. 2009;32(3):351–60.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Uchiyama M, Hamamura M, Kuwano T, et al. Long-term safety and efficacy of ramelteon in Japanese patients with chronic insomnia. Sleep Med. 2011;12(2):127–33.PubMedGoogle Scholar
  159. 159.
    Krystal AD. A compendium of placebo-controlled trials of the risks/benefits of pharmacological treatments for insomnia: the empirical basis for U.S. clinical practice. Sleep Med Rev. 2009;13(4):265–74.PubMedGoogle Scholar
  160. 160.
    Otmani S, Demazieres A, Staner C, et al. Effects of prolonged-release melatonin, zolpidem, and their combination on psychomotor functions, memory recall, and driving skills in healthy middle aged and elderly volunteers. Hum Psychopharmacol. 2008;23(8):693–705.PubMedGoogle Scholar
  161. 161.
    Paul MA, Gray G, Kenny G, Pigeau RA. Impact of melatonin, zaleplon, zopiclone, and temazepam on psychomotor performance. Aviat Space Environ Med. 2003;74(12):1263–70.PubMedGoogle Scholar
  162. 162.
    Kryger M, Wang-Weigand S, Zhang J, Roth T. Effect of ramelteon, a selective MT(1)/MT (2)-receptor agonist, on respiration during sleep in mild to moderate COPD. Sleep Breath. 2008;12(3):243–50.PubMedGoogle Scholar
  163. 163.
    Kryger M, Roth T, Wang-Weigand S, Zhang J. The effects of ramelteon on respiration during sleep in subjects with moderate to severe chronic obstructive pulmonary disease. Sleep Breath. 2009;13(1):79–84.PubMedGoogle Scholar
  164. 164.
    Garfinkel D, Zisapel N, Wainstein J, Laudon M. Facilitation of benzodiazepine discontinuation by melatonin: a new clinical approach. Arch Intern Med. 1999;159(20):2456–60.PubMedGoogle Scholar
  165. 165.
    Kunz D, Bineau S, Maman K, Milea D, Toumi M. Benzodiazepine discontinuation with prolonged-release melatonin: hints from a German longitudinal prescription database. Expert Opin Pharmacother. 2012;13(1):9–16.PubMedGoogle Scholar
  166. 166.
    Entzian P, Linnemann K, Schlaak M, Zabel P. Obstructive sleep apnea syndrome and circadian rhythms of hormones and cytokines. Am J Respir Crit Care Med. 1996;153(3):1080–6.PubMedGoogle Scholar
  167. 167.
    Papaioannou I, Twigg GL, Kemp M, et al. Melatonin concentration as a marker of the circadian phase in patients with obstructive sleep apnoea. Sleep Med. 2012;13(2):167–71.PubMedGoogle Scholar
  168. 168.
    Wikner J, Svanborg E, Wetterberg L, Rojdmark S. Melatonin secretion and excretion in patients with obstructive sleep apnea syndrome. Sleep. 1997;20(11):1002–7.PubMedGoogle Scholar
  169. 169.
    Rechcinski T, Uznanska-Loch B, Trzos E, et al. Melatonin – a somniferous option which does not aggravate sleep-disordered breathing in cardiac risk patients: a Holter ECG based study. Kardiol Pol. 2012;70(1):24–9.PubMedGoogle Scholar
  170. 170.
    Kryger M, Wang-Weigand S, Roth T. Safety of ramelteon in individuals with mild to moderate obstructive sleep apnea. Sleep Breath. 2007;11(3):159–64.PubMedGoogle Scholar
  171. 171.
    Jain SV, Simakajornboon N, Arthur TM. Central sleep apnea: does stabilizing sleep improve it? J Child Neurol. 2012;26:1411–21. [Epub ahead of print].Google Scholar
  172. 172.
    Michaud M, Dumont M, Selmaoui B, Paquet J, Fantini ML, Montplaisir J. Circadian rhythm of restless legs syndrome: relationship with biological markers. Ann Neurol. 2004;55(3): 372–80.PubMedGoogle Scholar
  173. 173.
    Tribl GG, Waldhauser F, Sycha T, Auff E, Zeitlhofer J. Urinary 6-hydroxy-melatonin-sulfate excretion and circadian rhythm in patients with restless legs syndrome. J Pineal Res. 2003;35(4):295–6.PubMedGoogle Scholar
  174. 174.
    Garcia-Borreguero D, Serrano C, Larrosa O, Granizo JJ. Circadian effects of dopaminergic treatment in restless legs syndrome. Sleep Med. 2004;5(4):413–20.PubMedGoogle Scholar
  175. 175.
    Whittom S, Dumont M, Petit D, et al. Effects of melatonin and bright light administration on motor and sensory symptoms of RLS. Sleep Med. 2010;11(4):351–5.PubMedGoogle Scholar
  176. 176.
    Hajek M, Meier-Ewert K, Wirz-Justice A, et al. Bright white light does not improve narcoleptic symptoms. Eur Arch Psychiatry Neurol Sci. 1989;238(4):203–7.PubMedGoogle Scholar
  177. 177.
    Donjacour CE, Kalsbeek A, Overeem S, et al. Altered circadian rhythm of melatonin concentrations in hypocretin-deficient men. Chronobiol Int. 2012;29(3):356–62.PubMedGoogle Scholar
  178. 178.
    Blazejova K, Illnerova H, Hajek I, Nevsimalova S. Circadian rhythm in salivary melatonin in narcoleptic patients. Neurosci Lett. 2008;437(2):162–4.PubMedGoogle Scholar
  179. 179.
    Blazejova K, Nevsimalova S, Illnerova H, Hajek I, Sonka K. Sleep disorders and the 24-hour profile of melatonin and cortisol. Sb Lek. 2000;101(4):347–51.PubMedGoogle Scholar
  180. 180.
    Kunz D, Bes F. Melatonin effects in a patient with severe REM sleep behavior disorder: case report and theoretical considerations. Neuropsychobiology. 1997;36(4):211–4.PubMedGoogle Scholar
  181. 181.
    Kunz D, Bes F. Melatonin as a therapy in REM sleep behavior disorder patients: an open-labeled pilot study on the possible influence of melatonin on REM-sleep regulation. Mov Disord. 1999;14(3):507–11.PubMedGoogle Scholar
  182. 182.
    Takeuchi N, Uchimura N, Hashizume Y, et al. Melatonin therapy for REM sleep behavior disorder. Psychiatry Clin Neurosci. 2001;55(3):267–9.PubMedGoogle Scholar
  183. 183.
    Kunz D, Mahlberg R. A two-part, double-blind, placebo-controlled trial of exogenous melatonin in REM sleep behaviour disorder. J Sleep Res. 2010;19(4):591–6.PubMedGoogle Scholar
  184. 184.
    Boeve BF, Silber MH, Ferman TJ. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients. Sleep Med. 2003;4(4):281–4.PubMedGoogle Scholar
  185. 185.
    McCarter SJ, Boswell CL, St Louis EK, et al. Treatment outcomes in REM sleep behavior disorder. Sleep Med. 2013;14:237–42.PubMedGoogle Scholar
  186. 186.
    Schernhammer ES, Berrino F, Krogh V, et al. Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2008;100(12):898–905.PubMedCentralPubMedGoogle Scholar
  187. 187.
    Schernhammer ES, Hankinson SE. Urinary melatonin levels and postmenopausal breast cancer risk in the nurses’ health study cohort. Cancer Epidemiol Biomarkers Prev. 2009;18(1):74–9.PubMedCentralPubMedGoogle Scholar
  188. 188.
    Grin W, Grunberger W. A significant correlation between melatonin deficiency and endometrial cancer. Gynecol Obstet Invest. 1998;45(1):62–5.PubMedGoogle Scholar
  189. 189.
    Lissoni P, Tancini G, Barni S, et al. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer. 1997;5(2):126–9.PubMedGoogle Scholar
  190. 190.
    Lissoni P, Barni S, Mandala M, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer. 1999;35(12):1688–92.PubMedGoogle Scholar
  191. 191.
    Lissoni P. Is there a role for melatonin in supportive care? Support Care Cancer. 2002;10(2): 110–6.PubMedGoogle Scholar
  192. 192.
    Lissoni P, Barni S, Ardizzoia A, et al. Randomized study with the pineal hormone melatonin versus supportive care alone in advanced nonsmall cell lung cancer resistant to a first-line chemotherapy containing cisplatin. Oncology. 1992;49(5):336–9.PubMedGoogle Scholar
  193. 193.
    Mills E, Wu P, Seely D, Guyatt G. Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res. 2005;39(4):360–6.PubMedGoogle Scholar
  194. 194.
    Brivio F, Fumagalli L, Fumagalli G, et al. Synchronization of cortisol circadian rhythm by the pineal hormone melatonin in untreatable metastatic solid tumor patients and its possible prognostic significance on tumor progression. In Vivo. 2010;24(2):239–41.PubMedGoogle Scholar
  195. 195.
    Berk L, Berkey B, Rich T, et al. Randomized phase II trial of high-dose melatonin and radiation therapy for RPA class 2 patients with brain metastases (RTOG 0119). Int J Radiat Oncol Biol Phys. 2007;68(3):852–7.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Sleep MedicineHarvard Medical School, Brigham and Women’s HospitalBostonUSA

Personalised recommendations