Skip to main content

Oral Delivery of Biopharmaceuticals

  • Chapter
  • First Online:
Book cover Mucosal Delivery of Biopharmaceuticals

Abstract

For the past decade, oral drug delivery improved considerably in terms of drug innovations, new line extensions with better pharmacokinetic profiles, and thus, greater efficacy and patient compliance. In terms of R&D, the application of recent technologies and techniques, such as nanosizing or supercritical solutions, promoted this evolution as well as the recovery and readaptation of old fashion methods and well-known excipients, such as solid dispersions and conventional coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elgart A, Cherniakov I, Aldouby Y, Domb AJ, Hoffman A. Lipospheres and pro-nano lipospheres for delivery of poorly water soluble compounds. Chem Phys Lipids. 2012;165(4):438–53.

    CAS  PubMed  Google Scholar 

  2. Reis CP, Damgé C. Nanotechnology as a promising strategy for alternative routes of insulin delivery. In: Düzgünes N, editor. Methods in enzymology. Vol. 508. Academic Press; 2012. pp. 271–94.

    Google Scholar 

  3. Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv. 2011;8(10):1361–78.

    CAS  PubMed  Google Scholar 

  4. Li P, Zhao L. Developing early formulations: practice and perspective. Int J Pharm. 2007;341(1–2):1–19.

    CAS  PubMed  Google Scholar 

  5. van der Walle CF, Sharma G, Ravi Kumar M. Current approaches to stabilising and analysing proteins during microencapsulation in PLGA. Expert Opin Drug Deliv. 2009;6(2):177–86.

    Google Scholar 

  6. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.

    CAS  PubMed  Google Scholar 

  7. Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes—future perspectives. Int J Pharm. 2013;440(1):48–62.

    CAS  PubMed  Google Scholar 

  8. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    CAS  PubMed  Google Scholar 

  9. Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv Drug Deliv Rev. 2012;64(6):480–95.

    CAS  PubMed  Google Scholar 

  10. Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm. 2012;39(1):1–19.

    CAS  PubMed  Google Scholar 

  11. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.

    PubMed  Google Scholar 

  12. Bansal K, Pant P, Rao P, Padhee K, Sathapathy A, Kochhar P. Micronization and dissolution enhacement of norethindrone. IJRPC. 2011;1:315–9.

    CAS  Google Scholar 

  13. Joshi JT. A review on micronization techniques. J Pharma Scie Technol. 2011;3(7):651–81.

    CAS  Google Scholar 

  14. van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv. 2011;8(11):1481–500.

    CAS  PubMed  Google Scholar 

  15. Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS J. 2012;14(4):677–87.

    CAS  PubMed  Google Scholar 

  16. Bosselmann S, Williams RO. Has nanotechnology led to improved therapeutic outcomes? Drug Dev Ind Pharm. 2012;38(2):158–70.

    CAS  PubMed  Google Scholar 

  17. Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937–51.

    CAS  PubMed  Google Scholar 

  18. Moutinho CG, Matos CM, Teixeira JA, Balcão VM. Nanocarrier possibilities for functional targeting of bioactive peptides and proteins: state-of-the-art. J Drug Target. 2011;20(2):114–41.

    PubMed  Google Scholar 

  19. Sprunk A, Strachan CJ, Graf A. Rational formulation development and in vitro assessment of SMEDDS for oral delivery of poorly water soluble drugs. Eur J Pharm Sci. 2012;46(5):508–15.

    CAS  PubMed  Google Scholar 

  20. Nishino Y, Kubota A, Kanazawa T, Takashima Y, Ozeki T, Okada H. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion. J Pharm Sci. 2012;101(11):4191–200.

    CAS  PubMed  Google Scholar 

  21. Nanjwade BK, Patel DJ, Udhani RA, Manvi FV. Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm. 2011;79(4):705–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Mohsin K. Design of lipid-based formulations for oral administration of poorly water-soluble drug fenofibrate: effects of digestion. AAPS PharmSciTech. 2012;13(2):637–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lv L, Tong C, Lv Q, Tang X, Li L, Fang Q, Yu J, Han M, Gao J. Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies. Int J Nanomedicine. 2012;7:4099–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang J, Peng Q, Shi S, Zhang Q, Sun X, Gong T, Zhang Z. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int J Nanomedicine. 2011;6:3405–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Thomas N, Holm R, Müllertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release 2012;160(1):25–32.

    CAS  Google Scholar 

  26. Villar AMS, Naveros BC, Campmany ACC, Trenchs MA, Rocabert CB, Bellowa LH. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int J Pharm. 2012;431(1–2):161–75.

    CAS  PubMed  Google Scholar 

  27. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.

    Google Scholar 

  28. Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–44.

    CAS  PubMed  Google Scholar 

  29. He C, Yin L, Tang C, Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials. 2012;33(33):8569–78.

    CAS  PubMed  Google Scholar 

  30. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci. 2012;45(5):632–8.

    CAS  PubMed  Google Scholar 

  32. Wu Z, Ling L, Zhou L, Guo X, Jiang W, Qian Y, Luo K, Zhang L. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. Nanoscale Res Lett. 2012;7(1):299.

    CAS  PubMed  Google Scholar 

  33. Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q, Yu S. PLGA Nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280–9.

    CAS  PubMed  Google Scholar 

  34. Khalil NM, do Nascimento TCF, Casa DM, Dalmolin LF, Mattos ACD, Hoss I, Romano MA, Mainardes RM. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–60.

    CAS  PubMed  Google Scholar 

  35. Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, Ghosh A, Saha KD, Das N. Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact. 2012;195(3):206–14.

    CAS  PubMed  Google Scholar 

  36. Ma Y, Zhao X, Li J, Shen Q. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability. Int J Nanomedicine. 2012;7:559–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Semete B, Booysen LIJ, Kalombo L, Venter JD, Katata L, Ramalapa B, Verschoor JA, Swai H. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol. 2010;249(2):158–65.

    CAS  PubMed  Google Scholar 

  38. Murugeshu A, Astete C, Leonardi C, Morgan T, Sabliov CM. Chitosan/PLGA particles for controlled release of alpha-tocopherol in the GI tract via oral administration. Nanomedicine. 2011;6(9):1513–28.

    CAS  PubMed  Google Scholar 

  39. Chang P-C, Lim LP, Chong LY, Dovban ASM, Chien L-Y, Chung M-C, Lei C, Kao M-J, Chen C-H, Chiang H-C, Kuo Y-P, Wang C-H. PDGF-simvastatin delivery stimulates osteogenesis in heat-induced osteonecrosis. J Dental Res. 2012;91(6):618–24.

    CAS  Google Scholar 

  40. Mittal G, Carswell H, Brett R, Currie S, Kumar MNVR. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release. 2011;150(2):220–8.

    CAS  PubMed  Google Scholar 

  41. Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine. 2012;7(9):1311–37.

    CAS  PubMed  Google Scholar 

  42. Hattori Y, Maitani Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J Control Release. 2004;97(1):173–83.

    CAS  PubMed  Google Scholar 

  43. Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm. 2012;9(7):2103–10.

    CAS  Google Scholar 

  44. Yamanaka Y, Leong K. Engineering strategies to enhance nanoparticle-mediated oral delivery. J Biomater Sci Polym Ed. 2008;19(12):1549–70.

    CAS  PubMed  Google Scholar 

  45. Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007;8(10):3054–60.

    CAS  PubMed  Google Scholar 

  46. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    CAS  PubMed  Google Scholar 

  47. Han H-K, Shin H-J, Ha DH. Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur J Pharm Sci. 2012;46(5):500–7.

    CAS  PubMed  Google Scholar 

  48. Sung H-W, Sonaje K, Liao Z-X, Hsu L-W, Chuang E-Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res. 2012;45(4):619–29.

    CAS  PubMed  Google Scholar 

  49. Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release 2012;161(2):496–504.

    Google Scholar 

  50. Werle M, Makhlof A, Takeuchi H. Carbopol-lectin conjugate coated liposomes for oral peptide delivery. Chem Pharm Bull. 2010;58(3):432–4.

    CAS  PubMed  Google Scholar 

  51. Rawat M, Singh D, Saraf S, Saraf S. Development and in vitro evaluation of alginate gel-encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme. Drug Dev Ind Pharm. 2008;34(2):181–8.

    CAS  PubMed  Google Scholar 

  52. Derakhshandeh K, Fathi S. Role of chitosan nanoparticles in the oral absorption of Gemcitabine. Int J Pharm. 2012;437(1–2):172–7.

    CAS  PubMed  Google Scholar 

  53. Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad S. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomedicine. 2012;7:1851–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kowapradit J, Apirakaramwong A, Ngawhirunpat T, Rojanarata T, Sajomsang W, Opanasopit P. Methylated N-(4-N, N-dimethylaminobenzyl) chitosan coated liposomes for oral protein drug delivery. Eur J Pharm Sci. 2012;47(2):359–66.

    CAS  PubMed  Google Scholar 

  55. Chen H, Wu J, Sun M, Guo C, Yu A, Cao F, Zhao L, Tan Q, Zhai G. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–9.

    CAS  PubMed  Google Scholar 

  56. Venishetty VK, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B Biointerfaces. 2012;95:1–9.

    CAS  PubMed  Google Scholar 

  57. Sugihara H, Yamamoto H, Kawashima Y, Takeuchi H. Effects of food intake on the mucoadhesive and gastroretentive properties of submicron-sized chitosan-coated liposomes. Chem Pharm Bull (Tokyo). 2012;60(10):1320–3.

    Google Scholar 

  58. Llabot JM, Salman H, Millotti G, Bernkop-Schnürch A, Allemandi D, Manuel Irache J. Bioadhesive properties of poly(anhydride) nanoparticles coated with different molecular weights chitosan. J Microencapsul. 2011;28(5):455–63.

    CAS  PubMed  Google Scholar 

  59. Lalatsa A, Garrett NL, Ferrarelli T, Moger J, Schätzlein AG, Uchegbu IF. Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm. 2012;9(6):1764–74.

    CAS  PubMed  Google Scholar 

  60. Dünnhaupt S, Barthelmes J, Iqbal J, Perera G, Thurner CC, Friedl H, Bernkop-Schnürch A. In vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan. J Control Release 2012;160(3):477–85.

    Google Scholar 

  61. Gradauer K, Vonach C, Leitinger G, Kolb D, Fröhlich E, Roblegg E, Bernkop-Schnürch A, Prassl R. Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties. Int J Nanomedicine. 2012;7:2523–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012;13(1):159–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Cui F-D, Tao A-J, Cun D-M, Zhang L-Q, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci. 2007;96(2):421–7.

    CAS  PubMed  Google Scholar 

  64. Sharma M, Sharma V, Panda AK, Majumdar DK. Development of enteric submicron particle formulation of papain for oral delivery. Int J Nanomedicine. 2011;6:2097–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Barea MJ, Jenkins MJ, Gaber MH, Bridson RH. Evaluation of liposomes coated with a pH responsive polymer. Int J Pharm. 2010;402(1–2):89–94.

    CAS  PubMed  Google Scholar 

  66. Barea M, Jenkins M, Lee Y, Johnson P, Bridson R. Encapsulation of liposomes within pH responsive microspheres for oral colonic drug delivery. Int J Biomater. 2012;2012:458712.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Zhang Y, Wu X, Meng L, Zhang Y, Ai R, Qi N, He H, Xu H, Tang X. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation. Int J Pharm. 2012;436(1–2):341–50.

    CAS  PubMed  Google Scholar 

  68. Zhu Q, Talton J, Zhang G, Cunningham T, Wang Z, Waters R, Kirk J, Eppler B, Klinman D, Sui Y, Gagnon S, Belyakov I, Mumper R, Berzofsky J. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nature Med. 2012;18:1291–6.

    CAS  PubMed  Google Scholar 

  69. Su F-Y, Lin K-J, Sonaje K, Wey S-P, Yen T-C, Ho Y-C, Panda N, Chuang E-Y, Maiti B, Sung H-W. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801–11.

    CAS  PubMed  Google Scholar 

  70. Feng S-S, Mei L, Anitha P, Gan CW, Zhou W. Poly(lactide)- Vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials. 2009;30(19):3297–306.

    CAS  PubMed  Google Scholar 

  71. Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    CAS  PubMed  Google Scholar 

  72. Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids. 2012;165(4):454–61.

    CAS  PubMed  Google Scholar 

  73. Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6(1):9–24.

    CAS  Google Scholar 

  74. Reis CP. Encapsulação de fármacos peptídicos pelo método de emulsificação/gelificação interna, PhD Thesis, Coimbra, Portugal; 2008.

    Google Scholar 

  75. Reis CP, Ribeiro AJ, Veiga F, Neufeld RJ, Damgé C. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug Deliv. 2008;15(2):127–39.

    CAS  PubMed  Google Scholar 

  76. Deutel B, Greindl M, Thaurer M, Bernkop-Schnürch A. Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug delivery system. Biomacromolecules. 2007;9(1):278–85.

    PubMed  Google Scholar 

  77. Cheddadi M, López-Cabarcos E, Slowing K, Barcia E, Fernández-Carballido A. Cytotoxicity and biocompatibility evaluation of a poly(magnesium acrylate) hydrogel synthesized for drug delivery. Int J Pharm. 2011;413(1–2):126–33.

    CAS  PubMed  Google Scholar 

  78. Alam S, Panda J, Chauhan V. Novel dipeptide nanoparticles for effective curcumin delivery. Int J Nanomedicine. 2012;7:4207–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Chen Y, Yuan L, Zhou L, Zhang Z, Cao W, Wu Q. Effect of cell-penetrating peptide-coated nanostructured lipid carriers on the oral absorption of tripterine. Int J Nanomedicine. 2012;7:4581–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Brasseur R, Divita G. Happy birthday cell penetrating peptides: already 20 years. Biochim Biophys Acta (BBA). 2010;1798(12):2177–81.

    CAS  Google Scholar 

  81. González-Aramundiz J, Lozano MV, Sousa-Herves A, Fernandez-Megia E, Csaba N. Polypeptides and polyaminoacids in drug delivery. Expert Opini Drug Deliv. 2012;9(2):183–201.

    Google Scholar 

  82. Khafagy E-S, Morishita M. Oral biodrug delivery using cell-penetrating peptide. Adv Drug Delivery Rev. 2012;64(6):531–9.

    CAS  Google Scholar 

  83. Patel J, Patel A, Raval M, Sheth N. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J Adv Pharm Technol Res. 2011;2(1):9–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Hu S, Niu M, Hu F, Lu Y, Qi J, Yin Z, Wu W. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm. 2013;441(1-2):693–70.

    Google Scholar 

  85. Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139–51.

    CAS  PubMed  Google Scholar 

  86. Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, Gu G, Jiang M, Pang Z, Chen H, Chen J, Fang L. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine. 2012;7:3703–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Holpuch A, Hummel G, Tong M, Seghi G, Pei P, Ma P, Mumper R, Mallery S. Nanoparticles for local drug delivery to the oral mucosa: proof of principle studies. Pharm Res. 2012;27(7):1224–36.

    Google Scholar 

  88. Li X, Chen D, Le C, Zhu C, Gan Y, Hovgaard L, Yang M. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomedicine. 2011;6:3151–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Gosangari SL, Watkin KL. Enhanced release of anticancer agents from nanoliposomes in response to diagnostic ultrasound energy levels. Pharm Dev Technol. 2012;17(3):383–8.

    CAS  PubMed  Google Scholar 

  90. Parmentier J, Becker MMM, Heintz U, Fricker G. Stability of liposomes containing bio-enhancers and tetraether lipids in simulated gastro-intestinal fluids. Int J Pharm. 2011;405(1–2):210–7.

    CAS  PubMed  Google Scholar 

  91. Shi F, Zhao J, Liu Y, Wang Z, Zhang Y, Feng N. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomedicine. 2012;7:2033–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. MaHam A, Tang Z, Wu H, Wang J, Lin Y. Protein-based nanomedicine platforms for drug delivery. Small. 2009;5(15):1706–21.

    CAS  PubMed  Google Scholar 

  93. Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin coated hybrid lipid nanoparticles for oral delivery of Amphotericin B. Mol Pharm. 2012;9(9):2542–53.

    CAS  PubMed  Google Scholar 

  94. He P, Tang Z, Lin L, Deng M, Pang X, Zhuang X, Chen X. Novel biodegradable and pH-sensitive poly(ester amide) microspheres for oral insulin delivery. Macromol Biosci. 2012;12(4):547–56.

    CAS  PubMed  Google Scholar 

  95. Silva AC, González-Mira E, García ML, Egea MA, Fonseca J, Silva R, Santos D, Souto EB, Ferreira D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces. 2011;86(1):158–65.

    CAS  PubMed  Google Scholar 

  96. Silva AC, Amaral MH, E. González-Mira, Santos D, Ferreira D. Solid lipid nanoparticles (SLN)—based hydrogels as potential carriers for oral transmucosal delivery of Risperidone: preparation and characterization studies. Colloids Surf B Biointerfaces. 2012;93:241–8.

    CAS  PubMed  Google Scholar 

  97. Silva AC, Kumar A, Wild W, Ferreira D, Santos D, Forbes B. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. Int J Pharm. 2012;436(1–2):798–805.

    CAS  PubMed  Google Scholar 

  98. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release. 2011;150(2):128–41.

    CAS  Google Scholar 

  99. Tan A, Simovic S, Davey AK, Rades T, Prestidge CA. Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs. J Control Rel. 2009;134(1):62–70.

    CAS  Google Scholar 

  100. Bimbo LM, Mäkilä E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials. 2011;32(10):2625–33.

    CAS  PubMed  Google Scholar 

  101. Cao X, Fu M, Wang L, Liu H, Deng W, Qu R, Su W, Wei Y, Xu X, Yu J. Oral bioavailability of silymarin formulated as a novel 3-day delivery system based on porous silica nanoparticles. Acta Biomaterialia. 2012;8(6):2104–12.

    CAS  PubMed  Google Scholar 

  102. Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials. 2012;33(11):3353–62.

    CAS  PubMed  Google Scholar 

  103. Wang T, Jiang H, Zhao Q, Wang S, Zou M, Cheng G. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties. Int J Pharm. 2012;436(1–2):351–8.

    CAS  PubMed  Google Scholar 

  104. Hoffman R, Brenner B. The promise of novel direct oral anticoagulants. Best Pract Res Clin Haematol. 2012;25(3):351–60.

    CAS  PubMed  Google Scholar 

  105. Seo J, Ren G, Liu H, Miao Z, Park M, Wang Y, Miller TM, Barron AE, Cheng Z. In vivo biodistribution and small animal PET of 64Cu-Labeled antimicrobial peptoids. Bioconjug Chem. 2012;23(5):1069–79.

    CAS  Google Scholar 

  106. Dong Q-G, Zhang Y, Wang M-S, Feng J, Zhang H-H, Wu Y-G, Gu T-J, Yu X-H, Jiang C-L, Chen Y, Li W, Kong W. Improvement of enzymatic stability and intestinal permeability of deuterohemin-peptide conjugates by specific multi-site N-methylation. Amino Acids. 2012;1–11.

    Google Scholar 

  107. Wang Y, Lin H, Tullman R, Jewell CF, Weetall ML, Tse FLS. Absorption and disposition of a tripeptoid and a tetrapeptide in the rat. Biopharm Drug Dispos. 1999;20(2):69–75.

    CAS  PubMed  Google Scholar 

  108. Fievez V, Plapied L, des Rieux A, Pourcelle V, Freichels H, Wascotte V, Vanderhaeghen M-L, Jerôme C, Vanderplasschen A, Marchand-Brynaert J, Schneider Y-J, Préat V. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm. 2009;73(1):16–24.

    CAS  PubMed  Google Scholar 

  109. Hackett MJ, Zaro JL, Shen W-C, Guley PC, Cho MJ. Fatty acids as therapeutic auxiliaries for oral and parenteral formulations. Adv Drug Deliv Rev. 2012.

    Google Scholar 

  110. Sun S, Liang N, Piao H, Yamamoto H, Kawashima Y, Cui F. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J Microencapsul. 2010;27(6):471–8.

    CAS  PubMed  Google Scholar 

  111. Vadlapudi AD, Vadlapatla RK, Kwatra D, Earla R, Samanta SK, Pal D, Mitra AK. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm. 2012;434(1–2):315–24.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Pinto Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silva, C., Sarmento, B., Reis, C. (2014). Oral Delivery of Biopharmaceuticals. In: das Neves, J., Sarmento, B. (eds) Mucosal Delivery of Biopharmaceuticals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9524-6_5

Download citation

Publish with us

Policies and ethics