Skip to main content

High-resolution Cryo-EM Structure of the Trypanosoma brucei Ribosome: A Case Study

  • Chapter
  • First Online:
Computational Methods for Three-Dimensional Microscopy Reconstruction

Abstract

Single-particle cryo-electron microscopy has the immense advantage over crystallography in being able to image frozen-hydrated biological complexes in their “native” state, in solution. For years the ribosome has been the benchmark sample for particles without symmetry. It has witnessed steady improvement in resolution from the very first single-particle 3D reconstruction to today’s reconstructions at near-atomic resolution. In this study, we describe the different steps of sample preparation, data collection, data processing, and modeling that led to the 5Å structure of the T. brucei ribosome [32]. A local resolution estimation demonstrates the extent to which resolution can be anisotropic and pinpoints regions of higher heterogeneity or structural flexibility. This study also shows an example of misuse of spatial frequency filters leading to overfitting of the data and the artifacts that can be observed in the resulting density map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

Å:

Angstrom

β-me:

2-Mercaptoethanol

CCD:

Charge-coupled device

CMOS:

Complementary metal-oxide-semiconductor

cryo-EM:

cryo-Electron microscopy

CTF:

Contrast transfer function

e- :

Electron

EGTA:

Ethylene glycol tetraacetic acid

eIF1:

Eukaryotic Initiation Factor 1

EM:

Electron microscopy

EMDB:

Electron microscopy data bank

eEF2:

Eukaryotic elongation factor 2

ES:

Expansion segment

FEG:

Field emission gun

FSC:

Fourier shell correlation

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

kV:

Kilovolt

LSU:

Large ribosomal subunit

MDFF:

Molecular dynamics flexible fitting

MDFMM:

Multi-seed multi-domain fast-marching method

nM:

Nanomolar

PDB:

Protein data bank

PMSF:

Phenylmethanesulfonyl fluoride or phenylmethylsulfonyl fluoride

RNA:

Ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

SIRT:

Simultaneous iterative reconstruction technique

SKS:

25 mM sucrose, 5 mM KCl

SM:

Semi-defined medium

SNR:

Signal-to-noise ratio

SSU:

Small ribosomal subunit

TLCK:

Tosyllysine chloromethyl ketone hydrochloride

Tris:

Trishydroxymethylaminomethane

tRNA:

Transfer Ribonucleic acid

μm:

Micrometer

References

  1. Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R (2013) Structures of the human and Drosophila 80S ribosome. Nature 497(7447): 80–85

    Article  Google Scholar 

  2. Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, et al. (2010) Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. Proc Natl Acad Sci 107(46):19,748–19,753

    Google Scholar 

  3. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  Google Scholar 

  4. Bai XC, Fernandez IS, McMullan G, Scheres SH (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2(e00461):1–12

    Google Scholar 

  5. Baker ML, Yu Z, Chiu W, Bajaj C (2006) Automated segmentation of molecular subunits in electron cryomicroscopy density maps. J Struct Biol 156(3):432–441

    Article  Google Scholar 

  6. Baxter WT, Grassucci RA, Gao H, Frank J (2009) Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. J Struct Biol 166(2):126–132

    Article  Google Scholar 

  7. Ben-Shem A, Jenner L, Yusupova G, Yusupov M (2010) Crystal structure of the eukaryotic ribosome. Science 330(6008):1203–1209

    Article  Google Scholar 

  8. Ben-Shem A, de Loubresse NG, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334(6062):1524–1529

    Article  Google Scholar 

  9. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177(3):630–637

    Article  Google Scholar 

  10. Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M, et al (1983) Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J Computat Chemi 4(2):187–217

    Article  Google Scholar 

  11. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, et al (2002) The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3(1):2

    Article  Google Scholar 

  12. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2009) MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(1):12–21

    Article  Google Scholar 

  13. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, et al (2007) MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35(suppl 2):W375–W383

    Article  Google Scholar 

  14. Dubochet J, Adrian M, Chang JJ, Lepault J, McDowall AW (1987) Cryoelectron microscopy of vitrified specimens. In: Cryotechniques in biological electron microscopy, Springer, Berlin, pp 114–131

    Google Scholar 

  15. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen My, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, John Wiley and Sons, New york, pp 5–6

    Google Scholar 

  16. Faruqi A, McMullan G (2011) Electronic detectors for electron microscopy. Quarterly Rev Biophys 44(03):357–390

    Article  Google Scholar 

  17. Fernandez J, Luque D, Caston J, Carrascosa J (2008) Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol 164(1):170–175

    Article  Google Scholar 

  18. Frank J (1969) Demonstration of movement of objects in the light optical diffractogram of electron microscopic images. Optik 30:171–180

    Google Scholar 

  19. Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38:519–536

    Google Scholar 

  20. Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: Visualization of biological molecules in their native state. Oxford University Press, New York

    Book  Google Scholar 

  21. Frank J, Goldfarb W (1980) Methods for averaging of single molecules and lattice-fragments. In: Electron microscopy at molecular dimensions, Springer, New york pp 261–269

    Google Scholar 

  22. Frank J, Penczek P (1995) On the correction of the contrast transfer function in biological electron microscopy. Optik 98(3):125–129

    Google Scholar 

  23. Frank J, Penczek P, Grassucci R, Srivastava S (1991) Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: The distribution of ribosomal RNA. J Cell Biol 115(3):597–605

    Article  Google Scholar 

  24. Frank J, Zhu J, Penczek P, Li Y, Srivastava S, Verschoor A, Radermacher M, Grassucci R, Lata RK, Agrawal RK (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–444

    Article  Google Scholar 

  25. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116(1):190–199

    Article  Google Scholar 

  26. Gabashvili IS, Agrawal RK, Spahn CM, Grassucci RA, Svergun DI, Frank J, Penczek P (2000) Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100(5):537–549

    Article  Google Scholar 

  27. Glaeser R, McMullan G, Faruqi A, Henderson R (2011) Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion. Ultramicroscopy 111(2):90–100

    Article  Google Scholar 

  28. Gómez EB, Medina G, Ballesta JP, Levin MJ, Téllez-Iñón MT (2001) Acidic ribosomal P proteins are phosphorylated in Trypanosoma cruzi. Int J Parasitol 31(10):1032–1039

    Article  Google Scholar 

  29. Goncharov A, Vainshtein B, Ryskin A, Vagin A (1987) Three-dimensional reconstruction of arbitrarily oriented identical particles from their electron photomicrographs. Sov Phys, Crystallogr 32:504–509

    Google Scholar 

  30. Grassucci RA, Taylor DJ, Frank J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nature Protocols 2(12):3239–3246

    Article  Google Scholar 

  31. Grigorieff N (2000) Resolution measurement in structures derived from single particles. Acta Crystallogr D Biol Crystallogr 56(10):1270–1277

    Article  Google Scholar 

  32. Hashem Y, Des Georges A, Fu J, Buss SN, Jossinet F, Jobe A, Zhang Q, Liao HY, Grassucci RA, Bajaj C, et al (2013) High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature 494(7437):385–389

    Article  Google Scholar 

  33. Henderson R, Chen S, Chen JZ, Grigorieff N, Passmore LA, Ciccarelli L, Rubinstein JL, Crowther RA, Stewart PL, Rosenthal PB (2011) Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy. J Mol Biol 413(5):1028–1046

    Article  Google Scholar 

  34. Henderson R, et al (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–171

    Article  Google Scholar 

  35. Heymann JB (2001) Bsoft: Image and molecular processing in electron microscopy. J Struct Biol 133(2):156–169

    Article  Google Scholar 

  36. Heymann BJ, Cardone G, Winkler DC, Steven AC (2008) Computational resources for cryo-electron tomography in Bsoft. J Struct Biol 161(3):232–242

    Article  Google Scholar 

  37. Huang Z, Baldwin PR, Mullapudi S, Penczek PA (2003) Automated determination of parameters describing power spectra of micrograph images in electron microscopy. J Struct Biol 144(1):79–94

    Article  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  39. Jossinet F, Westhof E (2005) Sequence to Structure (S2S): Sisplay, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21(15):3320–3321

    Article  Google Scholar 

  40. Jossinet F, Ludwig TE, Westhof E (2010) Assemble: An interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26(16):2057–2059

    Article  Google Scholar 

  41. Kaminsky R, Beaudoin E, Cunningham I (1988) Cultivation of the life cycle stages of Trypanosoma brucei sspp. Acta Tropica 45(1):33

    Google Scholar 

  42. Kato T, Goodman RP, Erben CM, Turberfield AJ, Namba K (2009) High-resolution structural analysis of a DNA nanostructure by cryoEM. Nano Lett 9(7):2747–2750

    Article  Google Scholar 

  43. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: A case study using the Phyre server. Nat Protocol 4(3):363–371

    Article  Google Scholar 

  44. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Research 37(suppl 1):D387–D392

    Article  Google Scholar 

  45. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N (2011) Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334(6058):941–948

    Article  Google Scholar 

  46. Langer R, Frank J, Feltynowski A, Hoppe W (1970) Anwendung des bilddifferenzverfahrens auf die untersuchung von strukturänderungen dünner kohlefolien bei elektronenbestrahlung. Berichte der Bunsengesellschaft für physikalische Chemie 74(11):1120–1126

    Google Scholar 

  47. Langmore JP, Smith MF (1992) Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46(1):349–373

    Article  Google Scholar 

  48. LeBarron J, Grassucci RA, Shaikh TR, Baxter WT, Sengupta J, Frank J (2008) Exploration of parameters in cryo-EM leading to an improved density map of the E. coli ribosome. J Struct Biol 164(1):24–32

    Article  Google Scholar 

  49. Lei J, Frank J (2005) Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J Struct Biol 150(1):69–80

    Article  Google Scholar 

  50. Leschziner AE, Nogales E (2006) The orthogonal tilt reconstruction method: An approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J Struct Biol 153(3):284–299

    Article  Google Scholar 

  51. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Meth 10(6):584–590

    Article  Google Scholar 

  52. Liao HY, Frank J (2010) Classification by bootstrapping in single particle methods. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on IEEE, pp 169–172

    Google Scholar 

  53. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: Semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128(1):82–97

    Article  Google Scholar 

  54. Ludtke SJ, Baker ML, Chen DH, Song JL, Chuang DT, Chiu W (2008) De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16(3):441–448

    Article  Google Scholar 

  55. MacKerell AD, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha Sa, et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  Google Scholar 

  56. Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142(3):334–347

    Article  Google Scholar 

  57. Penczek PA (2010) Fundamentals of three-dimensional reconstruction from projections. Meth Enzymol 482:1–33

    Article  Google Scholar 

  58. Penczek P, Radermacher M, Frank J (1992) Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40(1):33–53

    Article  Google Scholar 

  59. Penczek P, Zhu J, Schröder R, Frank J (1997) Three dimensional reconstruction with contrast transfer compensation from defocus series. Scanning Microsc 11:147–154

    Google Scholar 

  60. Penczek PA, Yang C, Frank J, Spahn CM (2006) Estimation of variance in single-particle reconstruction using the bootstrap technique. J Struct Biol 154(2):168–183

    Article  Google Scholar 

  61. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  Google Scholar 

  62. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16): 1781–1802

    Article  Google Scholar 

  63. Pintilie GD, Zhang J, Goddard TD, Chiu W, Gossard DC (2010) Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol 170(3):427–438

    Article  Google Scholar 

  64. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  Google Scholar 

  65. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331(6018):730–736

    Article  Google Scholar 

  66. Radermacher M, Wagenknecht T, Verschoor A, Frank J (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J Microsc 141(1):RP1–RP2

    Article  Google Scholar 

  67. Radermacher M, Wagenknecht T, Verschoor A, Frank J (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146(2):113–136

    Article  Google Scholar 

  68. Rath B, Frank J (2004) Fast automatic particle picking from cryo-electron micrographs using a locally normalized cross-correlation function: A case study. J Struct Biol 145(1):84–90

    Article  Google Scholar 

  69. Roseman AM (2003) Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94(3):225–236

    Article  MathSciNet  Google Scholar 

  70. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333(4):721–745

    Article  Google Scholar 

  71. Saxton W, Frank J (1977) Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2:219–227

    Article  Google Scholar 

  72. Scheres SH (2012a) A Bayesian view on cryo-EM structure determination. J Mol Biol 415(2):406–418

    Article  Google Scholar 

  73. Scheres SH (2012b) RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530

    Article  Google Scholar 

  74. Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. Nature Meth 9(9):853–854

    Article  Google Scholar 

  75. Scheres SH, Núñez-Ramírez R, Sorzano CO, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protocol 3(6):977–990

    Article  Google Scholar 

  76. Schiske P (1973) Image processing using additional statistical information about the object. In: Hawkes P (ed) Image processing and computer-aided design in electron optics, Academic Press, New york pp 82–90

    Google Scholar 

  77. Schröder RR, Manstein DJ, Jahn W, Holden H, Rayment I, Holmes KC, Spudich JA (1993) Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364(6433):171–174

    Article  Google Scholar 

  78. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protocol 3(12):1941–1974

    Article  Google Scholar 

  79. Shannon CE (1949) Communication in the presence of noise. Proceedings of the IRE 37(1): 10–21

    Article  MathSciNet  Google Scholar 

  80. Sindelar CV, Grigorieff N (2011) An adaptation of the Wiener filter suitable for analyzing images of isolated single particles. J Struct Biol 176(1):60–74

    Article  Google Scholar 

  81. Sindelar CV, Grigorieff N (2012) Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter. J Struct Biol 180(1):26–38

    Article  Google Scholar 

  82. Stagg SM, Lander GC, Quispe J, Voss NR, Cheng A, Bradlow H, Bradlow S, Carragher B, Potter CS (2008) A test-bed for optimizing high-resolution single particle reconstructions. J Struct Biol 163(1):29–39

    Article  Google Scholar 

  83. Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J (2007) Structures of modified eEF2⋅ 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. The EMBO J 26(9):2421–2431

    Article  Google Scholar 

  84. Thon F (1966) Zur defokussierungsabhängigkeit des phasenkontrastes bei der elektronenmikroskopischen abbildung. Zeitschrift Naturforschung Teil A 21:476

    Google Scholar 

  85. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5):673–683

    Article  Google Scholar 

  86. Typke D, Hegerl R, Kleinz J (1992) Image restoration for biological objects using external TEM control and electronic image recording. Ultramicroscopy 46(1):157–173

    Article  Google Scholar 

  87. Unwin PNT, Henderson R (1975) Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94(3):425–440

    Article  Google Scholar 

  88. Van Heel M (1987) Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21(2):111–123

    Article  Google Scholar 

  89. Wade R (1992) A brief look at imaging and contrast transfer. Ultramicroscopy 46(1):145–156

    Article  Google Scholar 

  90. Wade R, Frank J (1977) Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49(2):81–92

    Google Scholar 

  91. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R (2012) LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA 18(5):900–914

    Article  Google Scholar 

  92. Yu X, Jin L, Zhou ZH (2008) 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453(7193):415–419

    Article  Google Scholar 

  93. Yu Z, Bajaj C (2008) Computational approaches for automatic structural analysis of large biomolecular complexes. IEEE/ACM Trans Computat Biol Bioinformatics 5(4):568–582

    Google Scholar 

  94. Zhang Q, Bettadapura R, Bajaj C (2012) Macromolecular structure modeling from 3D EM using VolRover 2.0. Biopolymers 97(9):709–731

    Article  Google Scholar 

  95. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci 105(6):1867–1872

    Article  Google Scholar 

  96. Zhou ZH, Chiu W (1993) Prospects for using an IVEM with a FEG for imaging macromolecules towards atomic resolution. Ultramicroscopy 49(1):407–416

    Article  Google Scholar 

  97. Zhu J, Penczek PA, Schröder R, Frank J (1997) Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: Procedure and application to the 70S Escherichia coli ribosome. J Struct Biol 118(3):197–219

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Cardone for the assistance in the local resolution computation, Dr Harry Kao for managing our computer cluster, and Melissa Thomas for her assistance with the preparation of figures. This work was supported by the Howard Hughes Medical Institute (HHMI) and the National Institutes of Health (NIH) grants R01 GM55440 and R01 GM29169 (to J.F.), L’Agence Nationale de la recherche (ANR) project AMIS ARN ANR-09-BLAN-0160 (E.W. and F.J.), as well as NIH R01-EB004873 and R01-GM074258 (to Q.Z. and C.B.). S.N.B. was supported by Centers for Disease Control (CDC) Emerging Infectious Diseases (EID) Fellowship program.

Author Contributions This chapter was written by A.d.G., Y.H., R. L., and J.F. In the work this chapter is based on, Y.H., A.d.G., C.B, S.M, and J.F. designed the experiments, interpreted the data, and wrote the manuscript published as a letter in Nature [32]. S.N.B. purified the T. brucei ribosomes. Y.H., J. Fu, and R.A.G. carried out the cryo-EM experiments. H.Y.L. performed the three-dimensional variance estimation. Y.H., A.J. C.B., and Q.Z. performed the density-map segmentations. A.d.G., Y.H., R. L., J. Fu, A.J., and H.Y.L. carried out the cryo-EM data processing. Y.H. and F.J. modeled the rRNA. Y.H., C.B., and Q.Z. modeled the ribosomal proteins. J.F. directed the research.

Author Information The electron microscopy map has been deposited in the European Molecular Biology Laboratory (EMBL) European Bioinformatics Institute Electron Microscopy Data Bank (EMDB) under accession code EMD-2239. Coordinates of electron-microscopy-based model have been deposited in the RCSB Protein Data Bank under accession numbers 3ZEQ, 3ZEX, 3ZEY, and 3ZF7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedee des Georges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Georges, A.d. et al. (2014). High-resolution Cryo-EM Structure of the Trypanosoma brucei Ribosome: A Case Study. In: Herman, G., Frank, J. (eds) Computational Methods for Three-Dimensional Microscopy Reconstruction. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-9521-5_5

Download citation

Publish with us

Policies and ethics