Epigenetics of Psychopathology

  • Alicia K. Smith
  • Sasha E. Parets
  • Andrew W. Kim
Part of the Advances in Behavior Genetics book series (AIBG, volume 2)


Researchers studying mechanisms of learning, behavior, and psychopathology have embraced the field of epigenetics because of its potential to provide insight into mechanisms of pathophysiology, clinical biomarkers, and treatment. This chapter will provide an overview of fundamental concepts in epigenetics including histone modifications, DNA methylation, and microRNA. Because of the association between prenatal or early life stress and varying psychopathologies, it will introduce the concept of epigenetic programming during developmentally sensitive periods with particular emphasis on the role of the glucocorticoid receptor in neuroendocrine stress response. Finally, examples from recent epigenetic studies in mood, anxiety, psychotic, and substance abuse disorders will be used to highlight progress in the field as well as specific challenges in study design and interpretation.


Major Depressive Disorder Umbilical Cord Blood Early Life Stress PAC1 Receptor Epigenetic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramowitz, L. K., & Bartolomei, M. S. (2012). Genomic imprinting: Recognition and marking of imprinted loci. Current Opinion in Genetics and Development, 22(2), 72–78.PubMedCentralPubMedGoogle Scholar
  2. Adkins, R. M., Krushkal, J., Tylavsky, F. A., & Thomas, F. (2011). Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Research. Part A, Clinical and Molecular Teratology, 91(8), 728–736.PubMedCentralPubMedGoogle Scholar
  3. Angelucci, F., Brene, S., & Mathe, A. A. (2005). BDNF in schizophrenia, depression and corresponding animal models. Molecular Psychiatry, 10(4), 345–352.PubMedGoogle Scholar
  4. Annunziato, A. (2008). DNA packaging: Nucleosomes and chromatin. Nature Education, 1, 1.Google Scholar
  5. Bakke, O. M., & Haram, K. (1982). Time-course of transplacental passage of diazepam: Influence of injection-delivery interval on neonatal drug concentrations. Clinical Pharmacokinetics, 7(4), 353–362.PubMedGoogle Scholar
  6. Banister, C. E., Koestler, D. C., Maccani, M. A., Padbury, J. F., Houseman, E. A., & Marsit, C. J. (2011). Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics, 6(7), 920–927.PubMedGoogle Scholar
  7. Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395.PubMedGoogle Scholar
  8. Barker, D. J. (1997). Maternal nutrition, fetal nutrition, and disease in later life. Nutrition, 13(9), 807–813.PubMedGoogle Scholar
  9. Barker, D. J., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 1(8489), 1077–1081.PubMedGoogle Scholar
  10. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.PubMedCentralPubMedGoogle Scholar
  11. Battino, D., & Tomson, T. (2007). Management of epilepsy during pregnancy. Drugs, 67(18), 2727–2746.PubMedGoogle Scholar
  12. Beach, S. R., Brody, G. H., Todorov, A. A., Gunter, T. D., & Philibert, R. A. (2010). Methylation at SLC6A4 is linked to family history of child abuse: An examination of the Iowa Adoptee sample. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(2), 710–713.Google Scholar
  13. Bell, C. G., Finer, S., Lindgren, C. M., Wilson, G. A., Rakyan, V. K., Teschendorff, A. E., et al. (2010). Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One, 5(11), e14040.PubMedCentralPubMedGoogle Scholar
  14. Bennett, H. A., Einarson, A., Taddio, A., Koren, G., & Einarson, T. R. (2004). Prevalence of depression during pregnancy: Systematic review. Obstetrics and Gynecology, 103(4), 698–709.PubMedGoogle Scholar
  15. Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., et al. (2010). The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnology, 28(10), 1045–1048.PubMedCentralPubMedGoogle Scholar
  16. Beveridge, N. J., Gardiner, E., Carroll, A. P., Tooney, P. A., & Cairns, M. J. (2010). Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular Psychiatry, 15(12), 1176–1189.PubMedCentralPubMedGoogle Scholar
  17. Beydoun, H., & Saftlas, A. F. (2008). Physical and mental health outcomes of prenatal maternal stress in human and animal studies: A review of recent evidence. Paediatric and Perinatal Epidemiology, 22(5), 438–466.PubMedGoogle Scholar
  18. Bian, C., Wu, Y., Shi, Y., Xu, G., Wang, J., Xiang, M., et al. (2010). Predictive value of the relative lymphocyte count in coronary heart disease. Heart and Vessels, 25(6), 469–473.PubMedGoogle Scholar
  19. Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29(11), 1943–1961.PubMedGoogle Scholar
  20. Bittigau, P., Sifringer, M., Genz, K., Reith, E., Pospischil, D., Govindarajalu, S., et al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15089–15094.PubMedCentralPubMedGoogle Scholar
  21. Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, T., Cui, H., et al. (2008). Intra-individual change over time in DNA methylation with familial clustering. JAMA, 299(24), 2877–2883.PubMedCentralPubMedGoogle Scholar
  22. Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., Suh, H., et al. (2009). Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mechanisms of Ageing and Development, 130(4), 234–239.PubMedCentralPubMedGoogle Scholar
  23. Bonasio, R., Tu, S., & Reinberg, D. (2010). Molecular signals of epigenetic states. Science, 330(6004), 612–616.PubMedCentralPubMedGoogle Scholar
  24. Campbell, N. A., Mitchell, L. G., & Reece, J. B. (1997). Biology: Concepts & connections. Menlo Park, CA: Benjamin/Cummings Publishing Company.Google Scholar
  25. Camporeale, G., Oommen, A. M., Griffin, J. B., Sarath, G., & Zempleni, J. (2007). K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. The Journal of Nutritional Biochemistry, 18(11), 760–768.PubMedCentralPubMedGoogle Scholar
  26. Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. The American Journal of Psychiatry, 167(5), 509–527.PubMedCentralPubMedGoogle Scholar
  27. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386–389.PubMedGoogle Scholar
  28. Chadwick, L. H. (2012). The NIH Roadmap Epigenomics Program data resource. Epigenomics, 4(3), 317–324.PubMedCentralPubMedGoogle Scholar
  29. Chao, W., & D’Amore, P. A. (2008). IGF2: Epigenetic regulation and role in development and disease. Cytokine and Growth Factor Reviews, 19(2), 111–120.PubMedCentralPubMedGoogle Scholar
  30. Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259–284.PubMedGoogle Scholar
  31. Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. The American Journal of Human Genetics, 75(5), 807–821.Google Scholar
  32. Cichon, S., Craddock, N., Daly, M., Faraone, S. V., Gejman, P. V., Kelsoe, J., et al. (2009). Genomewide association studies: History, rationale, and prospects for psychiatric disorders. The American Journal of Psychiatry, 166(5), 540–556.PubMedGoogle Scholar
  33. Cohen, L. S., Nonacs, R. M., Bailey, J. W., Viguera, A. C., Reminick, A. M., Altshuler, L. L., et al. (2004). Relapse of depression during pregnancy following antidepressant discontinuation: A preliminary prospective study. Archives of Women’s Mental Health, 7(4), 217–221.PubMedGoogle Scholar
  34. Cortese, R., Kwan, A., Lalonde, E., Bryzgunova, O., Bondar, A., Wu, Y., et al. (2012). Epigenetic markers of prostate cancer in plasma circulating DNA. Human Molecular Genetics, 21(16), 3619–3631.PubMedGoogle Scholar
  35. Cutfield, W. S., Hofman, P. L., Mitchell, M., & Morison, I. M. (2007). Could epigenetics play a role in the developmental origins of health and disease? Pediatric Research, 61(5 Pt 2), 68R–75R.PubMedGoogle Scholar
  36. De Carolis, M. P., Romagnoli, C., Frezza, S., D’Urzo, E., Muzii, U., Mezza, A., et al. (1992). Placental transfer of phenobarbital: What is new? Developmental Pharmacology and Therapeutics, 19(1), 19–26.PubMedGoogle Scholar
  37. Dempster, E. L., Pidsley, R., Schalkwyk, L. C., Owens, S., Georgiades, A., Kane, F., et al. (2011). Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human Molecular Genetics, 20(24), 4786–4796.PubMedGoogle Scholar
  38. Dilli, D., Oguz, S. S., Dilmen, U., Koker, M. Y., & Kizilgun, M. (2010). Predictive values of neutrophil CD64 expression compared with interleukin-6 and C-reactive protein in early diagnosis of neonatal sepsis. Journal of Clinical Laboratory Analysis, 24(6), 363–370.PubMedGoogle Scholar
  39. Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 3(1), 79–83.PubMedGoogle Scholar
  40. Dolinoy, D. C., Weidman, J. R., & Jirtle, R. L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 23(3), 297–307.PubMedGoogle Scholar
  41. Dong, E., Nelson, M., Grayson, D. R., Costa, E., & Guidotti, A. (2008). Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13614–13619.PubMedCentralPubMedGoogle Scholar
  42. Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59(12), 1116–1127.PubMedGoogle Scholar
  43. Ehrlich, M. (2002). DNA methylation in cancer: Too much, but also too little. Oncogene, 21(35), 5400–5413.PubMedGoogle Scholar
  44. Eyal, S., Yagen, B., Sobol, E., Altschuler, Y., Shmuel, M., & Bialer, M. (2004). The activity of antiepileptic drugs as histone deacetylase inhibitors. Epilepsia, 45(7), 737–744.PubMedGoogle Scholar
  45. Feil, R., & Fraga, M. F. (2011). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13(2), 97–109.Google Scholar
  46. Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440.PubMedGoogle Scholar
  47. Fetissov, S. O., & Dechelotte, P. (2011). The new link between gut-brain axis and neuropsychiatric disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 14(5), 477–482.PubMedGoogle Scholar
  48. Ficz, G., Branco, M. R., Seisenberger, S., Santos, F., Krueger, F., Hore, T. A., et al. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature, 473(7347), 398–402.PubMedGoogle Scholar
  49. Foster, E. R., & Downs, J. A. (2005). Histone H2A phosphorylation in DNA double-strand break repair. The FEBS Journal, 272(13), 3231–3240.PubMedGoogle Scholar
  50. Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286(5442), 1155–1158.PubMedGoogle Scholar
  51. Fuchikami, M., Morinobu, S., Segawa, M., Okamoto, Y., Yamawaki, S., Ozaki, N., et al. (2011). DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One, 6(8), e23881.PubMedCentralPubMedGoogle Scholar
  52. Fuchikami, M., Yamamoto, S., Morinobu, S., Takei, S., & Yamawaki, S. (2010). Epigenetic regulation of BDNF gene in response to stress. Psychiatry Investigation, 7(4), 251–256.PubMedCentralPubMedGoogle Scholar
  53. Gavin, D. P., & Akbarian, S. (2012). Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease. Neurobiology of Disease, 46(2), 255–262.PubMedGoogle Scholar
  54. Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: An expanding universe. Nature Reviews Genetics, 10(2), 94–108.PubMedCentralPubMedGoogle Scholar
  55. Gill, J. M., Saligan, L., Woods, S., & Page, G. (2009). PTSD is associated with an excess of inflammatory immune activities. Perspectives in Psychiatric Care, 45(4), 262–277.PubMedGoogle Scholar
  56. Gkrania-Klotsas, E., Ye, Z., Cooper, A. J., Sharp, S. J., Luben, R., Biggs, M. L., et al. (2010). Differential white blood cell count and type 2 diabetes: Systematic review and meta-analysis of cross-sectional and prospective studies. PLoS One, 5(10), e13405.PubMedCentralPubMedGoogle Scholar
  57. Glauser, T., Ben-Menachem, E., Bourgeois, B., Cnaan, A., Chadwick, D., Guerreiro, C., et al. (2006). ILAE treatment guidelines: Evidence-based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 47(7), 1094–1120.PubMedGoogle Scholar
  58. Gottlicher, M., Minucci, S., Zhu, P., Kramer, O. H., Schimpf, A., Giavara, S., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal, 20(24), 6969–6978.PubMedGoogle Scholar
  59. Gu, Z., Wang, H., Nekrutenko, A., & Li, W. H. (2000). Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. Gene, 259(1–2), 81–88.PubMedGoogle Scholar
  60. Guo, Y., Chen, Y., Carreon, S., & Qiang, M. (2012). Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcoholism, Clinical and Experimental Research, 36(6), 1058–1066.PubMedCentralPubMedGoogle Scholar
  61. Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423–434.PubMedCentralPubMedGoogle Scholar
  62. Higuchi, F., Uchida, S., Yamagata, H., Otsuki, K., Hobara, T., Abe, N., et al. (2011). State-dependent changes in the expression of DNA methyltransferases in mood disorder patients. Journal of Psychiatric Research, 45(10), 1295–1300.PubMedGoogle Scholar
  63. Hinz, T., Zaccaro, D., Byron, M., Brendes, K., Krieg, T., Novak, N., et al. (2011). Atopic dermo-respiratory syndrome is a correlate of eczema herpeticum. Allergy, 66(7), 925–933.PubMedCentralPubMedGoogle Scholar
  64. Hostetter, A., Ritchie, J. C., & Stowe, Z. N. (2000). Amniotic fluid and umbilical cord blood concentrations of antidepressants in three women. Biological Psychiatry, 48(10), 1032–1034.PubMedGoogle Scholar
  65. Huang, H. S., Matevossian, A., Whittle, C., Kim, S. Y., Schumacher, A., Baker, S. P., et al. (2007). Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. Journal of Neuroscience, 27(42), 11254–11262.PubMedGoogle Scholar
  66. Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178–186.PubMedCentralPubMedGoogle Scholar
  67. Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310), 1129–1133.PubMedCentralPubMedGoogle Scholar
  68. Jafarzadeh, A., Poorgholami, M., Izadi, N., Nemati, M., & Rezayati, M. (2010). Immunological and hematological changes in patients with hyperthyroidism or hypothyroidism. Clinical and Investigative Medicine, 33(5), E271–E279.PubMedGoogle Scholar
  69. Jeltsch, A. (2006). Molecular enzymology of mammalian DNA methyltransferases. Current Topics in Microbiology and Immunology, 301, 203–225.PubMedGoogle Scholar
  70. Kadonaga, J. T. (1998). Eukaryotic transcription: An interlaced network of transcription factors and chromatin-modifying machines. Cell, 92(3), 307–313.PubMedGoogle Scholar
  71. Kafri, T., Gao, X., & Razin, A. (1993). Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10558–10562.PubMedCentralPubMedGoogle Scholar
  72. Kaminsky, Z. A., Tang, T., Wang, S. C., Ptak, C., Oh, G. H., Wong, A. H., et al. (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics, 41(2), 240–245.PubMedGoogle Scholar
  73. Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., et al. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830), 1484–1488.PubMedGoogle Scholar
  74. Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68(5), 444–454.PubMedCentralPubMedGoogle Scholar
  75. Kawamura, N., Kim, Y., & Asukai, N. (2001). Suppression of cellular immunity in men with a past history of posttraumatic stress disorder. The American Journal of Psychiatry, 158(3), 484–486.PubMedGoogle Scholar
  76. Keller, S., Sarchiapone, M., Zarrilli, F., Videtic, A., Ferraro, A., Carli, V., et al. (2010). Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Archives of General Psychiatry, 67(3), 258–267.PubMedGoogle Scholar
  77. Kendler, K. S., Bulik, C. M., Silberg, J., Hettema, J. M., Myers, J., & Prescott, C. A. (2000). Childhood sexual abuse and adult psychiatric and substance use disorders in women: An epidemiological and cotwin control analysis. Archives of General Psychiatry, 57(10), 953–959.PubMedGoogle Scholar
  78. Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., et al. (2008). Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genetics, 40(7), 904–908.PubMedGoogle Scholar
  79. Kessler, R. C. (2000). Posttraumatic stress disorder: The burden to the individual and to society. Journal of Clinical Psychiatry, 61, 4–12.PubMedGoogle Scholar
  80. Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshelman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-IIIR psychiatric disorders in the United States: Results from the national comorbidity survey. Archives of General Psychiatry, 51, 8–19.PubMedGoogle Scholar
  81. Kim, A. H., Parker, E. K., Williamson, V., McMichael, G. O., Fanous, A. H., & Vladimirov, V. I. (2012). Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137. Schizophrenia Research, 141(1), 60–64.PubMedGoogle Scholar
  82. Kurdistani, S. K., Tavazoie, S., & Grunstein, M. (2004). Mapping global histone acetylation patterns to gene expression. Cell, 117(6), 721–733.PubMedGoogle Scholar
  83. Kuzmichev, A., Jenuwein, T., Tempst, P., & Reinberg, D. (2004). Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Molecular Cell, 14(2), 183–193.PubMedGoogle Scholar
  84. Kwon, E., Wang, W., & Tsai, L. H. (2013). Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Molecular Psychiatry, 18(1), 11–12.PubMedGoogle Scholar
  85. Latham, K. E., Sapienza, C., & Engel, N. (2012). The epigenetic lorax: Gene-environment interactions in human health. Epigenomics, 4(4), 383–402.PubMedCentralPubMedGoogle Scholar
  86. Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274(5292), 1527–1531.PubMedGoogle Scholar
  87. Li, B., Carey, M., & Workman, J. L. (2007). The role of chromatin during transcription. Cell, 128(4), 707–719.PubMedGoogle Scholar
  88. Li, Y., Zhu, J., Tian, G., Li, N., Li, Q., Ye, M., et al. (2010). The DNA methylome of human peripheral blood mononuclear cells. PLoS Biology, 8(11), e1000533.PubMedCentralPubMedGoogle Scholar
  89. Liang, P., Song, F., Ghosh, S., Morien, E., Qin, M., Mahmood, S., et al. (2011). Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics, 12(1), 231.PubMedCentralPubMedGoogle Scholar
  90. Lindstrom, K., Lindblad, F., & Hjern, A. (2009). Psychiatric morbidity in adolescents and young adults born preterm: A Swedish national cohort study. Pediatrics, 123(1), e47–e53.PubMedGoogle Scholar
  91. Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–322.PubMedCentralPubMedGoogle Scholar
  92. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 1659–1662.PubMedGoogle Scholar
  93. Liu, J., Hutchison, K., Perrone-Bizzozero, N., Morgan, M., Sui, J., & Calhoun, V. (2010). Identification of genetic and epigenetic marks involved in population structure. PLoS One, 5(10), e13209.PubMedCentralPubMedGoogle Scholar
  94. Lucchesi, J. C., Kelly, W. G., & Panning, B. (2005). Chromatin remodeling in dosage compensation. Annual Review of Genetics, 39, 615–651.PubMedGoogle Scholar
  95. Maes, M., Lin, A. H., Delmeire, L., Van Gastel, A., Kenis, G., De Jongh, R., et al. (1999). Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biological Psychiatry, 45(7), 833–839.PubMedGoogle Scholar
  96. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18(4), 497–511.Google Scholar
  97. Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6(11), 838–849.PubMedGoogle Scholar
  98. Mattick, J. S., Taft, R. J., & Faulkner, G. J. (2010). A global view of genomic information—moving beyond the gene and the master regulator. Trends in Genetics, 26(1), 21–28.PubMedGoogle Scholar
  99. Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D’Souza, C., Fouse, S. D., et al. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303), 253–257.PubMedGoogle Scholar
  100. McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.PubMedCentralPubMedGoogle Scholar
  101. McGraw Hill Encyclopedia of Science and Technology. (1997). New York: McGraw-Hill.Google Scholar
  102. Meaburn, E. L., Schalkwyk, L. C., & Mill, J. (2010). Allele-specific methylation in the human genome: Implications for genetic studies of complex disease. Epigenetics, 5(7), 578–582.PubMedGoogle Scholar
  103. Menon, R., Conneely, K. N., & Smith, A. K. (2012). DNA methylation: An epigenetic risk factor in preterm birth. Reproductive Sciences, 19(1), 6–13.PubMedGoogle Scholar
  104. Mill, J., Tang, T., Kaminsky, Z., Khare, T., Yazdanpanah, S., Bouchard, L., et al. (2008). Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. The American Journal of Human Genetics, 82(3), 696–711.Google Scholar
  105. Moverare-Skrtic, S., Mellstrom, D., Vandenput, L., Ehrich, M., & Ohlsson, C. (2009). Peripheral blood leukocyte distribution and body mass index are associated with the methylation pattern of the androgen receptor promoter. Endocrine, 35(2), 204–210.PubMedGoogle Scholar
  106. Mullen, P. E., Martin, J. L., Anderson, J. C., Romans, S. E., & Herbison, G. P. (1993). Childhood sexual abuse and mental health in adult life. The British Journal of Psychiatry, 163, 721–732.PubMedGoogle Scholar
  107. Munafo, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene X environment interactions at the serotonin transporter locus. Biological Psychiatry, 65(3), 211–219.PubMedGoogle Scholar
  108. Munzel, M., Globisch, D., & Carell, T. (2011). 5-Hydroxymethylcytosine, the sixth base of the genome. Angewandte Chemie International Edition in English, 50(29), 6460–6468.Google Scholar
  109. Nascimento, H., Rocha, S., Rego, C., Mansilha, H. F., Quintanilha, A., Santos-Silva, A., et al. (2010). Leukocyte count versus C-reactive protein levels in obese portuguese patients aged 6-12 years old. The Open Biochemistry Journal, 4, 72–76.PubMedCentralPubMedGoogle Scholar
  110. Nicodemus, K. K., Marenco, S., Batten, A. J., Vakkalanka, R., Egan, M. F., Straub, R. E., et al. (2008). Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Molecular Psychiatry, 13(9), 873–877.PubMedGoogle Scholar
  111. Nosarti, C., Reichenberg, A., Murray, R. M., Cnattingius, S., Lambe, M. P., Yin, L., et al. (2012). Preterm birth and psychiatric disorders in young adult life. Archives of General Psychiatry, 69(6), E1–E8.PubMedGoogle Scholar
  112. Novakovic, B., Yuen, R. K., Gordon, L., Penaherrera, M. S., Sharkey, A., Moffett, A., et al. (2011). Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics, 12, 529.PubMedCentralPubMedGoogle Scholar
  113. Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3(2), 97–106.PubMedGoogle Scholar
  114. Olney, J. W., Wozniak, D. F., Jevtovic-Todorovic, V., Farber, N. B., Bittigau, P., & Ikonomidou, C. (2002). Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathology, 12(4), 488–498.PubMedGoogle Scholar
  115. Olsson, C. A., Foley, D. L., Parkinson-Bates, M., Byrnes, G., McKenzie, M., Patton, G. C., et al. (2010). Prospects for epigenetic research within cohort studies of psychological disorder: A pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biological Psychology, 83(2), 159–165.PubMedGoogle Scholar
  116. Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocrine Reviews, 22(4), 502–548.PubMedGoogle Scholar
  117. Park, P. H., Lim, R. W., & Shukla, S. D. (2005). Involvement of histone acetyltransferase (HAT) in ethanol-induced acetylation of histone H3 in hepatocytes: Potential mechanism for gene expression. American Journal of Physiology. Gastrointestinal and Liver Physiology, 289(6), G1124–G1136.PubMedGoogle Scholar
  118. Park, P. H., Miller, R., & Shukla, S. D. (2003). Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes. Biochemical and Biophysical Research Communications, 306(2), 501–504.PubMedGoogle Scholar
  119. Pennell, P. B., Peng, L., Newport, D. J., Ritchie, J. C., Koganti, A., Holley, D. K., et al. (2008). Lamotrigine in pregnancy: Clearance, therapeutic drug monitoring, and seizure frequency. Neurology, 70(22 Pt 2), 2130–2136.PubMedCentralPubMedGoogle Scholar
  120. Petersen, I., Gilbert, R. E., Evans, S. J., Man, S. L., & Nazareth, I. (2011). Pregnancy as a major determinant for discontinuation of antidepressants: An analysis of data from The Health Improvement Network. The Journal of Clinical Psychiatry, 72(7), 979–985.PubMedGoogle Scholar
  121. Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A., & Klein, P. S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of Biological Chemistry, 276(39), 36734–36741.PubMedGoogle Scholar
  122. Philibert, R. A., Sandhu, H., Hollenbeck, N., Gunter, T., Adams, W., & Madan, A. (2008). The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(5), 543–549.Google Scholar
  123. Pidsley, R., & Mill, J. (2011). Epigenetic studies of psychosis: Current findings, methodological approaches, and implications for postmortem research. Biological Psychiatry, 69(2), 146–156.PubMedGoogle Scholar
  124. Post, R. M., Altshuler, L. L., Frye, M. A., Suppes, T., Keck, P. E., Jr., McElroy, S. L., et al. (2010). Complexity of pharmacologic treatment required for sustained improvement in outpatients with bipolar disorder. The Journal of Clinical Psychiatry, 71(9), 1176–1186; quiz 1173–1252.Google Scholar
  125. Rakyan, V. K., Down, T. A., Maslau, S., Andrew, T., Yang, T. P., Beyan, H., et al. (2010). Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Research, 20(4), 434–439.PubMedGoogle Scholar
  126. Ressler, K. J., Mercer, K. B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., et al. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature, 470(7335), 492–497.PubMedCentralPubMedGoogle Scholar
  127. Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA, 301(23), 2462–2471.PubMedCentralPubMedGoogle Scholar
  128. Rooks, D. S. (2007). Fibromyalgia treatment update. Current Opinion in Rheumatology, 19(2), 111–117.PubMedGoogle Scholar
  129. Roth, T. L., Lubin, F. D., Sodhi, M., & Kleinman, J. E. (2009). Epigenetic mechanisms in schizophrenia. Biochimica et Biophysica Acta, 1790(9), 869–877.PubMedCentralPubMedGoogle Scholar
  130. Roth, T. L., & Sweatt, J. D. (2011). Annual research review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. Journal of Child Psychology and Psychiatry, 52(4), 398–408.PubMedCentralPubMedGoogle Scholar
  131. Rougier, N., Bourc’his, D., Gomes, D. M., Niveleau, A., Plachot, M., Paldi, A., et al. (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes and Development, 12(14), 2108–2113.PubMedGoogle Scholar
  132. Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene-environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47(3–4), 226–261.PubMedGoogle Scholar
  133. Sakamoto, S., Ortaldo, J. R., & Young, H. A. (1988). Methylation patterns of the T cell receptor beta-chain gene in T cells, large granular lymphocytes, B cells, and monocytes. The Journal of Immunology, 140(2), 654–660.PubMedGoogle Scholar
  134. Santos-Silva, A., Rebelo, M. I., Castro, E. M., Belo, L., Guerra, A., Rego, C., et al. (2001). Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clinica Chimica Acta, 306(1–2), 119–126.Google Scholar
  135. Schalkwyk, L. C., Meaburn, E. L., Smith, R., Dempster, E. L., Jeffries, A. R., Davies, M. N., et al. (2010). Allelic skewing of DNA methylation is widespread across the genome. The American Journal of Human Genetics, 86(2), 196–212.Google Scholar
  136. Schiltz, R. L., Mizzen, C. A., Vassilev, A., Cook, R. G., Allis, C. D., & Nakatani, Y. (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. The Journal of Biological Chemistry, 274(3), 1189–1192.PubMedGoogle Scholar
  137. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–976.Google Scholar
  138. Schmidt, U., Holsboer, F., & Rein, T. (2011). Epigenetic aspects of posttraumatic stress disorder. Disease Markers, 30(2–3), 77–87.PubMedCentralPubMedGoogle Scholar
  139. Schmidt-Kastner, R., van Os, J., Steinbusch, W. M., & Schmitz, C. (2006). Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophrenia Research, 84(2–3), 253–271.PubMedGoogle Scholar
  140. Schroeder, J. W., Conneely, K. N., Cubells, J. C., Kilaru, V., Newport, D. J., Knight, B. T., et al. (2011). Neonatal DNA methylation patterns associate with gestational age. Epigenetics, 6(12), 1498–1504.PubMedGoogle Scholar
  141. Schroeder, J. W., Smith, A. K., Brennan, P. A., Conneely, K. N., Kilaru, V., Knight, B. T., et al. (2012). DNA methylation in neonates born to women receiving psychiatric care. Epigenetics, 7(4), 409–414.PubMedGoogle Scholar
  142. Seifuddin, F., Mahon, P. B., Judy, J., Pirooznia, M., Jancic, D., Taylor, J., et al. (2012). Meta-analysis of genetic association studies on bipolar disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 159B(5), 508–518.Google Scholar
  143. Shi, L., & Wu, J. (2009). Epigenetic regulation in mammalian preimplantation embryo development. Reproductive Biology and Endocrinology, 7, 59.PubMedGoogle Scholar
  144. Shiio, Y., & Eisenman, R. N. (2003). Histone sumoylation is associated with transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13225–13230.PubMedCentralPubMedGoogle Scholar
  145. Shoemaker, R., Deng, J., Wang, W., & Zhang, K. (2010). Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Research, 20(7), 883–889.PubMedGoogle Scholar
  146. Shukla, S. D., Velazquez, J., French, S. W., Lu, S. C., Ticku, M. K., & Zakhari, S. (2008). Emerging role of epigenetics in the actions of alcohol. Alcoholism, Clinical and Experimental Research, 32(9), 1525–1534.PubMedGoogle Scholar
  147. Silberstein, S. D. (2008). Treatment recommendations for migraine. Nature Clinical Practice Neurology, 4(9), 482–489.PubMedGoogle Scholar
  148. Singh, K. (2010). Leucocyte counts in anaemia. Indian Journal of Physiology and Pharmacology, 54(1), 85–88.PubMedGoogle Scholar
  149. Smith, A. K., Conneely, K. N., Kilaru, V., Mercer, K. B., Weiss, T. E., Bradley, B., et al. (2011). Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(6), 700–708.Google Scholar
  150. Smith, A. K., Conneely, K. N., Newport, D. J., Kilaru, V., Schroeder, J. W., Pennell, P. B., et al. (2012). Prenatal antiepileptic exposure associates with neonatal DNA methylation differences. Epigenetics, 7(5), 458–463.PubMedGoogle Scholar
  151. Spivak, B., Shohat, B., Mester, R., Avraham, S., Gil-Ad, I., Bleich, A., et al. (1997). Elevated levels of serum interleukin-1 beta in combat-related posttraumatic stress disorder. Biological Psychiatry, 42(5), 345–348.PubMedGoogle Scholar
  152. Stefovska, V. G., Uckermann, O., Czuczwar, M., Smitka, M., Czuczwar, P., Kis, J., et al. (2008). Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Annals of Neurology, 64(4), 434–445.PubMedGoogle Scholar
  153. Steiner, M. (2011). Serotonin, depression, and cardiovascular disease: Sex-specific issues. Acta Physiologica (Oxford, England), 203(1), 253–258.Google Scholar
  154. Sun, Y. V., Turner, S. T., Smith, J. A., Hammond, P. I., Lazarus, A., Van De Rostyne, J. L., et al. (2010). Comparison of the DNA methylation profiles of human peripheral blood cells and transformed B-lymphocytes. Human Genetics, 127(6), 651–658.PubMedCentralPubMedGoogle Scholar
  155. Taft, R. J., Glazov, E. A., Cloonan, N., Simons, C., Stephen, S., Faulkner, G. J., et al. (2009). Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 41(5), 572–578.PubMedGoogle Scholar
  156. Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., & Mattick, J. S. (2009). Small RNAs derived from snoRNAs. RNA, 15(7), 1233–1240.PubMedGoogle Scholar
  157. Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M., & Mattick, J. S. (2010). Non-coding RNAs: Regulators of disease. The Journal of Pathology, 220(2), 126–139.PubMedGoogle Scholar
  158. Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., Shen, H., et al. (2010). Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research, 20(4), 440–446.PubMedGoogle Scholar
  159. Tobi, E. W., Heijmans, B. T., Kremer, D., Putter, H., Delemarre-van de Waal, H. A., Finken, M. J., et al. (2011). DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics, 6(2), 171–176.PubMedGoogle Scholar
  160. Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. J. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8(5), 355–367.PubMedGoogle Scholar
  161. Tunbridge, E. M., Bannerman, D. M., Sharp, T., & Harrison, P. J. (2004). Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. Journal of Neuroscience, 24(23), 5331–5335.PubMedGoogle Scholar
  162. Tycko, B. (2010). Mapping allele-specific DNA methylation: A new tool for maximizing information from GWAS. The American Journal of Human Genetics, 86(2), 109–112.Google Scholar
  163. Uddin, M., Aiello, A. E., Wildman, D. E., Koenen, K. C., Pawelec, G., de Los Santos, R., et al. (2010). Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9470–9475.PubMedCentralPubMedGoogle Scholar
  164. Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., et al. (2011). Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31(18), 6692–6698.PubMedGoogle Scholar
  165. van IJzendoorn, M. H., Caspers, K., Bakermans-Kranenburg, M. J., Beach, S. R., & Philibert, R. (2010). Methylation matters: Interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biological Psychiatry, 68(5), 405–407.PubMedCentralPubMedGoogle Scholar
  166. Van Winkel, R., Esquivel, G., Kenis, G., Wichers, M., Collip, D., Peerbooms, O., et al. (2010). REVIEW: Genome-wide findings in schizophrenia and the role of gene-environment interplay. CNS Neuroscience and Therapeutics, 16(5), e185–e192.PubMedGoogle Scholar
  167. von Kanel, R., Hepp, U., Kraemer, B., Traber, R., Keel, M., Mica, L., et al. (2007). Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. Journal of Psychiatric Research, 41(9), 744–752.Google Scholar
  168. Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.Google Scholar
  169. Wadhwa, P. D., Culhane, J. F., Rauh, V., Barve, S. S., Hogan, V., Sandman, C. A., et al. (2001). Stress, infection and preterm birth: A biobehavioural perspective. Paediatric and Perinatal Epidemiology, 15(Suppl 2), 17–29.PubMedGoogle Scholar
  170. Wang, L., Pal, S., & Sif, S. (2008). Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Molecular and Cellular Biology, 28(20), 6262–6277.PubMedCentralPubMedGoogle Scholar
  171. Waterland, R. A., & Jirtle, R. L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition, 20(1), 63–68.PubMedGoogle Scholar
  172. Waterland, R. A., & Michels, K. B. (2007). Epigenetic epidemiology of the developmental origins hypothesis. Annual Review of Nutrition, 27, 363–388.PubMedGoogle Scholar
  173. Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.PubMedGoogle Scholar
  174. Weaver, I. C., D’Alessio, A. C., Brown, S. E., Hellstrom, I. C., Dymov, S., Sharma, S., et al. (2007). The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. Journal of Neuroscience, 27(7), 1756–1768.PubMedCentralPubMedGoogle Scholar
  175. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39(4), 457–466.PubMedGoogle Scholar
  176. Weickert, C. S., Hyde, T. M., Lipska, B. K., Herman, M. M., Weinberger, D. R., & Kleinman, J. E. (2003). Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Molecular Psychiatry, 8(6), 592–610.PubMedGoogle Scholar
  177. Weiss, T., Skelton, K., Phifer, J., Jovanovic, T., Gillespie, C. F., Smith, A., et al. (2011). Posttraumatic stress disorder is a risk factor for metabolic syndrome in an impoverished urban population. General Hospital Psychiatry, 33(2), 135–142.PubMedCentralPubMedGoogle Scholar
  178. Wittchen, H. U., Beesdo, K., & Bittner, A. (2003). Depression—An underdiagnosed disease. Medicographia, 25(1), 9–18.Google Scholar
  179. Wong, J., Duncan, C. E., Beveridge, N. J., Webster, M. J., Cairns, M. J., & Shannon Weickert, C. (2013). Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia. Schizophrenia Bulletin, 39(2), 396–406.PubMedGoogle Scholar
  180. Yonkers, K. A., Wisner, K. L., Stowe, Z., Leibenluft, E., Cohen, L., Miller, L., et al. (2004). Management of bipolar disorder during pregnancy and the postpartum period. The American Journal of Psychiatry, 161(4), 608–620.PubMedGoogle Scholar
  181. Zhang, D., Cheng, L., Badner, J. A., Chen, C., Chen, Q., Luo, W., et al. (2010). Genetic control of individual differences in gene-specific methylation in human brain. The American Journal of Human Genetics, 86(3), 411–419.Google Scholar
  182. Zhang, Y., Rohde, C., Reinhardt, R., Voelcker-Rehage, C., & Jeltsch, A. (2009). Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biology, 10(12), R138.PubMedCentralPubMedGoogle Scholar
  183. Zhou, W., Zhu, P., Wang, J., Pascual, G., Ohgi, K. A., Lozach, J., et al. (2008). Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Molecular Cell, 29(1), 69–80.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alicia K. Smith
    • 1
    • 2
  • Sasha E. Parets
    • 2
  • Andrew W. Kim
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA
  2. 2.Genetics and Molecular Biology ProgramEmory UniversityAtlantaUSA

Personalised recommendations