Skip to main content

UWB Antennas for CW Terahertz Imaging: Geometry Choice Criteria

  • Conference paper
  • First Online:

Abstract

There is a strong need for wideband and sensitive receivers in the terahertz (THz) region. This chapter focuses on the detection of continuous waves (CW) in the THz, using innovative bolometric sensors working as mixers for heterodyne reception with down conversion to the GHz range, as needed for radio astronomy, remote sensing, or passive imaging. In this case, the coupling to the incident THz radiation is accomplished by means of multi-octave planar micro-antennas. After selecting the antenna shape as angular, self-complementary, and/or self-similar, various antenna geometries are studied, namely, bow tie, Sierpinski fractal, sinuous, and log-periodic. Delivered power, directivity, and radiation pattern are discussed. According to seven criteria, the log-periodic antenna is preferred.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel, P.H., de Maagt, P., Zaghloul, A.I.: Antennas for terahertz applications. IEEE Antennas Propag. Soc. Int. Symp. Pap. 354-1, 2383–2386 (2006)

    Google Scholar 

  2. Gershenzon, E.M., Gol’tsman, G.N., Gogdize, I.G., Gusev, Y.P., Elant’ev, A.I., Karasik, B.S., Semenov, A.D.: Millimeter and submillimeter range mixer based on electron heating of superconducting films in the resistive state. Sov. Phys. Supercond. 3, 1582–1597 (1990)

    Google Scholar 

  3. Péroz, Ch., Dégardin, A.F., Villégier, J.-C., Kreisler, A.J.: Fabrication and characterization of ultrathin PBCO/YBCO/PBCO constrictions for hot electron bolometer THz mixing applications. IEEE Trans. Appl. Supercond. 17-2, 637–640 (2007)

    Google Scholar 

  4. Yasuoka, Y., Suzuki, K.: Fabrication of slot antenna array coupled warm carrier far-infrared radiation detectors. Microelectron. Eng. 67–68, 528–533 (2003)

    Article  Google Scholar 

  5. Kawamura, J., Tong, C.Y.E., Blundell, R., Papa, D.C., Hunter, T.R., Patt, F., Gol’tsman, G., Gershenzon, E.: Terahertz-frequency waveguide NbN hot-electron bolometer mixer. IEEE Trans. Appl. Supercond. 11, 952–954 (2001)

    Article  ADS  Google Scholar 

  6. Grossman, E.N.: Lithographic antennas for submillimeter and infrared frequencies. In: IEEE International Symposium on Electromagnetic Compatibility, pp. 102–107, 14–18 (1995)

    Google Scholar 

  7. Mushihake, Y.: Self-Complementary Antennas. Springer, Berlin (1996)

    Book  Google Scholar 

  8. Compton, R., McPhedran, R., Popovic, Z., Rebeiz, G., Tong, P., Rutledge, D.: Bow-tie antennas on a dielectric half-space: theory and experiment. IEEE Trans. Antennas Propag. 35, 622–631 (1987)

    Article  ADS  Google Scholar 

  9. Jaggard, D.L.: Prologue to special section on fractals in electrical engineering. Proc. IEEE 81, 1423–1427 (1993)

    Google Scholar 

  10. Puente, C., Romeu, J., Pous, R., Cardama, A.: Fractal multiband antenna based on the Sierpinski gasket. IEE Electron. Lett. 32, 1–2 (1996)

    Article  Google Scholar 

  11. DuHamel, R.H.: Dual polarized sinuous antennas. US Patent 4,658,262 (1987)

    Google Scholar 

  12. Rumsey, V.H.: Frequency-Independent Antennas. Academic, New York, NY (1966)

    Google Scholar 

  13. Türer, I., Gaztelu, X., Ribière-Tharaud, N., Dégardin, A.F., Kreisler, A.J.: Modeling broadband antennas for hot electron bolometers at terahertz frequencies. In: Sabath, F., et al. (eds.) Ultra-Wideband Short Pulse Electromagnetics 9. Springer, New York, NY (2010)

    Google Scholar 

Download references

Acknowledgments

This research was/is supported in part by (1) a Marie Curie EST Fellowship of the EC’s FP6 under contract # MEST-CT-2005-020692 and (2) the French National Research Agency (ANR) under contract # 2011 BS03 008 01. The authors wish to thank Dr N. Ribière-Tharaud (DRE-Supélec) for assistance in anechoic chamber tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Kreisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Türer, I., Dégardin, A.F., Kreisler, A.J. (2014). UWB Antennas for CW Terahertz Imaging: Geometry Choice Criteria. In: Sabath, F., Mokole, E. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9500-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9500-0_42

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9499-7

  • Online ISBN: 978-1-4614-9500-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics