Skip to main content

FDTD Analysis of Shielded High-T c Microstrip Resonators on Anisotropic Substrates

  • Conference paper
  • First Online:
Ultra-Wideband, Short-Pulse Electromagnetics 10

Abstract

An improved FDTD hybrid-mode technique is proposed to analyze shielded high-temperature T c superconducting (HTS) microstrip resonators of arbitrary thickness. The temperature dependence on resonant frequency and bandwidth are investigated assuming an anisotropic dielectric substrate. Variations of resonant frequency with high-T c superconducting thickness and shielding effect are also presented as well as S parameters over wideband.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen, R.C.: Antenna application of superconductors. IEEE Trans. Microw. Theory Tech. 39, 1508–1512 (1991)

    Article  ADS  Google Scholar 

  2. Chorey, M., et al.: YBCO superconducting ring resonators at millimeter-wave frequencies. IEEE Trans. Microw. Theory Tech. 39, 1480–1487 (1991)

    Article  ADS  Google Scholar 

  3. Nghiem, D., Williams, J.T., Jackson, D.R.: A general analysis of propagation along multiple-layer superconducting stripline and microstrip transmission lines. IEEE Trans. Microw. Theory Tech. 39, 1553–1565 (1991)

    Article  ADS  Google Scholar 

  4. Fang, Y., Liying, W., Zhang, J.: Excitation of plane waves for FDTD analysis of anisotropic layered media. IEEE Antennas Wirel. Propag. Lett. 8, 414–417 (2009)

    Article  ADS  Google Scholar 

  5. Duan, Y.T., Chen, B., Chen, H.L., Yi, Y.: Anisotropic-medium PML for efficient Laguerre-based FDTD method. Electron. Lett. 46(5), 318–319 (2010)

    Article  Google Scholar 

  6. Dou, L., Sebak, A.R.: 3D FDTD method for arbitrary anisotropic materials. Microw. Opt. Technol. Lett. 48, 2083–2090 (2006)

    Article  Google Scholar 

  7. Lyons, W.G., Roger, K.: Mini-special issue on ultra-wideband, part 1. IEEE Press, New York (2004)

    Google Scholar 

  8. Zhu, L., Bu, H., Wu, K.: Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter. In: Microwave Symposium Digest. IEEE MTT-S International, pp. 315–318 (2000)

    Google Scholar 

  9. Hao, Z.C., Hong, J.-S., Parry, J.P., Hand, D.: Ultra wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure. IEEE Trans. Microw.Theory Tech. 57, 3080–3088 (2009)

    Article  ADS  Google Scholar 

  10. Okazaki, Y., Suzuki, K., Enomoto, Y.: Superconducting microstrip resonator investigated by FDTD electromagnetic field simulator. IEEE Trans. Appl. Supercond. 9(2), 3034–3037 (1999)

    Article  Google Scholar 

  11. Vendik, O.G., Vendik, I.B.: Empirical model of the microwave properties of high-temperature superconductors. IEEE Trans. Microw. Theory Tech. 46, 469–478 (1998)

    Article  ADS  Google Scholar 

  12. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  ADS  MATH  Google Scholar 

  13. Lancaster, M.J.: Passive Microwave Device Applications of High-Temperature Superconductors. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  14. Maloney, J.G., Smith, G.S.: The efficient modeling of thin material sheets in the finite-difference time domain (FDTD) method. IEEE Trans. Antennas Propag. 40, 323–330 (1992)

    Article  ADS  Google Scholar 

  15. Protat, S., Delabie, C., Picon, O., Villegas, M.: Improved FDTD tool for the analysis of arbitrarily thick HTC superconducting planar lines. Electron. Lett. 36, 17–19 (2000)

    Article  Google Scholar 

  16. Zhao, A.P., Raisiinen, A.V.: Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits. IEEE Trans. Microw. Theory Tech. 44, 1535–1539 (1996)

    Article  ADS  Google Scholar 

  17. Mur, G.: Absorbing boundary conditions for finite difference approximation of the time domain electromagnetic field equations. IEEE Trans. Electromagn. Compat. 23, 377–382 (1981)

    Article  Google Scholar 

  18. Ghamlouche, H.: Simulation of microwave losses of superconductive microstrip line resonators and filters using commercial software. J. Supercond. Incorp. Nov. Magn. 15, 295–301 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Tounsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Tounsi, M.L., Madani, O., Yagoub, M.C.E. (2014). FDTD Analysis of Shielded High-T c Microstrip Resonators on Anisotropic Substrates. In: Sabath, F., Mokole, E. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9500-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9500-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9499-7

  • Online ISBN: 978-1-4614-9500-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics