Skip to main content

Self-Assembly of Nanodroplets in Nanocomposite Materials in Nanodroplets Science and Technology

  • Chapter
  • First Online:
Nanodroplets

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 18))

Abstract

Use of metal nanoarchitectures is increasing in electronics, diagnostics, therapeutics, sensing, and microelectromechanical systems due to their unique electromagnetic and physicochemical properties. This chapter examines physical, chemical, and hybrid methods to assemble metal nanodroplets in single- and multidimensional geometries and phases. Reductive self-assembly offers a route to economic, scale-able preparation of nanodroplets and stabilization on solid substrates that could lead to atom-level tune-ability. Enhanced control and real-time characterization have been used to uncover thermodynamic and transport mechanisms of nanodroplet self-assembly to enhance prediction and control of morphological features. Physicochemical principles of reductive nanodroplet self-assembly are examined to provide a framework to modulate local surface forces and control orderly self-assembly of metallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo, X., Orlov, A.O., Snider, G.L.J.: Vac. Sci. Technol. B 22, 3128–3132 (2004)

    Google Scholar 

  2. Scheible, D.V., Weiss, C., Kotthaus, J.P., Blick, R.H.: Phys. Rev. Lett. 93, 186801/1–186801/4 (2004)

    Google Scholar 

  3. Fedorovich, R.D., Inosov, D.S., Kiyaev, O.E., Lukyanets, S.P., Marchenko, A.A., Tomchuk, P.M., Bevzenko, D.A., Naumovets, A.G.J.: Mol. Struct. 708, 67–77 (2004)

    Google Scholar 

  4. Passian, A., Lereu, A.L., Farahi, R.H., Ferrell, T.L., Thundat, T.: Thermoplasmonics in thin metal films, chapter 3. In: Jost, A.R. (ed.) Trends in Thin Solid Films Research. Nova, New York (2007)

    Google Scholar 

  5. Sockalingum, G.D., Beljebbar, A., Morjani, H., Manfait, M.: Proc. SPIE Int. Soc. Opt. Eng. 3260, 58–62 (1998)

    Google Scholar 

  6. Tolaieb, B., Aroca, R.: Can. J. Anal. Sci. Spectrosc. 48, 139–145 (2003)

    Google Scholar 

  7. Jennings, C.A., Kovacs, G.J., Aroca, R.: Can. J. Phys. Chem. 96, 1340–1343 (1992)

    Google Scholar 

  8. Sockalingum, G.D., Beljebbar, A., Morjani, H., Angiboust, J.F., Manfait, M.: Biospectroscopy 4, S71–S78 (1998)

    Google Scholar 

  9. Vongsvivut, J., Itoh, T., Ikehata, A., Ekgasit, S., Ozaki, Y.: Sci. Asia 32, 261–269 (2006)

    Google Scholar 

  10. Sudo, E., Esaki, Y., Sugiura, M., Murase, A.: Appl. Spectrosc. 61, 269–275 (2007)

    Google Scholar 

  11. Kalyuzhny, G., Vaskevich, A., Schneeweiss, M.A., Rubinstein, I.: Chem. A Eur. J. 8, 3849–3857 (2002)

    Google Scholar 

  12. Ruach-Nir, I., Bendikov, T.A., Doron-Mor, I., Barkay, Z., Vaskevich, A., Rubinstein, I.J.: Am. Chem. Soc. 129, 84–92 (2007)

    Google Scholar 

  13. Lahav, M., Vaskevich, A., Rubinstein, I.: Langmuir 20, 7365–7367 (2004)

    Google Scholar 

  14. Ianoul, A.: Abstracts of the 35th Northeast regional meeting of the American Chemical Society, Binghamton, NY (2006)

    Google Scholar 

  15. Zhang, J., Atay, T., Nurmikko, A.V.: Optical detection of brain cell activity using plasmonic gold nanoparticles. Nano Lett. 9, 519–524 (2009)

    Google Scholar 

  16. Roper, D.K., Ahn, W., Taylor, B., Dall’Asén, A.G.: Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures. IEEE Sens. 10, 531–540 (2010)

    Google Scholar 

  17. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Google Scholar 

  18. Palpant, B., Rashidi-Huyeh, M., Gallas, B., Chenot, S., Fisson, S.: Appl. Phys. Lett. 90, 223105/1–223105/3 (2007)

    Google Scholar 

  19. Numata, T., Tatsuta, H., Morita, Y., Otani, Y., Umeda, N.: IEEJ Trans. Electr. Electron. Eng. 2, 398–401 (2007)

    Google Scholar 

  20. Mitsuishi, M., Koishikawa, Y., Tanaka, H., Sato, E., Mikayama, T., Matsui, J., Miyashita, T.: Langmuir 23, 7472–7474 (2007)

    Google Scholar 

  21. Driskell, J.D., Uhlenkamp, J.M., Lipert, R.J., Porter, M.D.: Anal. Chem. 79, 4141–4148 (2007)

    Google Scholar 

  22. Ozawa, H., Kawao, M., Tanaka, H., Ogawa, T.: Langmuir 23, 6365–6371 (2007)

    Google Scholar 

  23. Maier, S.A., Friedman, M.D., Barclay, P.E., Painter, O.: Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl. Phys. Lett. 86, 071103 (2005)

    Google Scholar 

  24. Toderas, F., Baia, M., Baia, L., Astilean, S.: Nanotechnol. 18, 255702/1–255702/6 (2007)

    Google Scholar 

  25. Smythe, E.J., Kickey, M.D., Bao, J., Whitesides, G.M., Capasso, F.: Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett. 9, 1132–1138 (2009)

    Google Scholar 

  26. Laurent, G., Félidj, N., Truong, S.L., Aubard, J., Lévi, G., Krenn, J.R., Hohenau, A., Leitner, A., Aussenegg, F.R.: Imaging surface plasmon of gold nanoparticle arrays by far-field Raman scattering. Nano Lett. 5, 253–258 (2005)

    Google Scholar 

  27. Kneipp, K.: Single Mol. 2, 291–292 (2001)

    Google Scholar 

  28. Domingo, C., Resta, V., Sanchez-Cortes, S., Garcia-Ramos, J.V., Gonzalo, J.J.: Phys. Chem. C 111, 8149–8152 (2007)

    Google Scholar 

  29. Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K.: Nano Lett. 7, 2819–2823 (2007)

    Google Scholar 

  30. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Google Scholar 

  31. Frens, G.: Particle size and sol stability in metal colloids. Colloid Polym. Sci. 250, 736–741 (1972)

    Google Scholar 

  32. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. (Lond.) Phys. Sci. 241, 20–22 (1973)

    Google Scholar 

  33. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. (7), 801 (1994)

    Google Scholar 

  34. Perrault, S.D., Chan, W.C.W.: Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 131(47), 17042–3 (2009)

    Google Scholar 

  35. Sakai, T., Alexandridis, P.: Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J. Phys. Chem. B 109(16), 7766–7777 (2005)

    Google Scholar 

  36. Ray, D., Aswal, V.K., Kohlbrecher, J.: Synthesis and characterization of high concentration block copolymer-mediated gold nanoparticles. Langmuir 2011(27), 4048–4056 (2011)

    Google Scholar 

  37. Barry, J.E., Finkelstein, M., Moore, W.M., Ross, S.D.J.: Org. Chem. 42, 1292–1298 (1982)

    Google Scholar 

  38. Myer, K.: Eshbach’s Handbook of Engineering Fundamentals, 5th edn, p. 1234. Wiley, Hoboken, NJ (2009)

    Google Scholar 

  39. Myer, K.: Eshbach’s Handbook of Engineering Fundamentals, 5th edn, p. 1234. Wiley, Hoboken, NJ (2009)

    Google Scholar 

  40. http://www.sparknotes.com/testprep/books/sat2/chemistry/chapter6section7.rhtml

  41. Kobasa, I.M., Mazurkevisch, Ya.S., Zozulya, N.I.: Theor. Exp. Chem 39, 316–321 (2003)

    Google Scholar 

  42. Owano, H., Murakami, H., Yamashita, T., Ohigashi, H., Ogata, T.: Synth. Met. 39, 327–341 (1991)

    Google Scholar 

  43. Abdou, H.E., Mohamed, A.A., Fackler Jr., J.P., Burini, A., Galassi, R., Lopez, J.M., Olmos, M.E.: Coord. Chem. Rev. 253, 1661–1669 (2009)

    Google Scholar 

  44. Borensztein, Y., Delannoy, L., Djedidi, A., Barrera, R.G., Louis, C.: Monitoring of the plasmon resonance of gold nanoparticles in Au/TiO2 catalyst under oxidative and reducing atmospheres. J. Phys. Chem. C 114, 9008–9021 (2010)

    Google Scholar 

  45. Ali, H.O., Christie, H.O.: Gold Bull. 17, 118–127 (1984)

    Google Scholar 

  46. Rackham, O., Nichols, S.J., Leedman, P.J., Berners-Price, S.J., Filipovska, A.: Biochem. Pharmacol. 74, 992–1002 (2007)

    Google Scholar 

  47. Kozlov, A.I., Kozlova, A.P., Asakura, K., Matsui, Y., Kogure, T., Shido, T., Iwasawa, Y.: J. Catal. 196, 56–65 (2000)

    Google Scholar 

  48. Menon, V.P., Martin, C.R.: Anal. Chem. 67, 1920–1928 (1995)

    Google Scholar 

  49. Ahn, W., Taylor, B., Dall’Asen, A.G., Roper, D.K.: Langmuir 24, 4174–4184 (2008)

    Google Scholar 

  50. Jang, G.G., Roper, D.K.J.: Phys. Chem. C 113, 19228–19236 (2009)

    Google Scholar 

  51. Blake, P., Ahn, W., Roper, D.K.: Langmuir 26, 1533–1538 (2010)

    Google Scholar 

  52. Lee, S.B., Martin, C.R.: Anal. Chem. 73, 768–775 (2001)

    Google Scholar 

  53. Ahn, W., Taylor, B., Dall’Asén, A.G., Roper, D.K.: Langmuir 24, 4174–4184 (2008)

    Google Scholar 

  54. Takeyasu, N., Tanaka, T., Kawata, S.J.J.: App. Phys. 44, 1134–1137 (2005)

    Google Scholar 

  55. Hrapovic, S., Liu, Y., Enright, G., Bensebaa, F., Luong, J.H.T.: Langmuir 19, 3958–3965 (2003)

    Google Scholar 

  56. Jang, G.-G., Roper, D.K.: Balancing redox activity allows spectrophotometric detection of Au(I) using tetramethylbenzidine dihydrochloride. Anal. Chem. 83(5), 1836–1842 (2011)

    Google Scholar 

  57. Ahn, W.: Novel Electroless gold nano-architectures to enhance photon-plasmon coupling. PhD Thesis, University of Utah (2010)

    Google Scholar 

  58. Caricato, A.P., Catalano, M., Ciccarella, G., Martino, M., Rella, R., Romano, F., Spadavecchia, J., Taurino, A., Tunno, T., Valerini, D.: Digest J. Nanomater. Biostruct. 1, 43–47 (2006)

    Google Scholar 

  59. Twardowski, M., Nuzzo, R.G.: Langmuir 18, 5529–5538 (2002)

    Google Scholar 

  60. Hirasawa, M., Shirakawa, H., Hamamura, H., Egashira, Y., Komiyama, H.J.: Appl. Phys. 82, 1404–1407 (1997)

    Google Scholar 

  61. Huang, H., Zhang, S., Qi, L., Yu, X., Chen, Y.: Surf. Coat. Technol. 200, 4389–4396 (2006)

    Google Scholar 

  62. Kim, E., Baeg, K., Noh, Y., Kim, D., Lee, T., Park, I., Jung, G.: Nanotechnology 20, 355302 (2009)

    Google Scholar 

  63. Doron-Mor, I., Cohen, H., Barkay, Z., Shanzer, A., Vaskevich, A., Rubinstein, I.: Chem. Eur. J. 11, 5555–5562 (2005)

    Google Scholar 

  64. Kalyuzhny, G., Vaskevich, A., Schneeweiss, M.A., Rubinstein, I.: Chem. A. Eur. J. 8, 3849–3857 (2002)

    Google Scholar 

  65. Dhawan, A., Muth, J.F.: Nanotechnology 17, 2504–2511 (2006)

    Google Scholar 

  66. Mitsui, K., Handa, Y., Kajikawa, K.: Appl. Phys. Lett. 85, 4231–4233 (2004)

    Google Scholar 

  67. Chumanov, G., Sokolov, K., Gregory, B.W., Cotton, T.M.J.: Phys. Chem. 99, 9466–9471 (1995)

    Google Scholar 

  68. Kim, B., Tripp, S.L., Wei, A.: J. Am. Chem. Soc. 123, 7955–7956 (2001)

    Google Scholar 

  69. Bar, G.: Langmuir 12, 1172–1179 (1996)

    Google Scholar 

  70. Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G., Natan, M.J.: Science 267, 1629–1632 (1995)

    Google Scholar 

  71. Qi, Z., Honma, I., Ichihara, M., Zhou, H.: Adv. Funct. Mater. 16, 377–386 (2006)

    Google Scholar 

  72. Day, T.M., Unwin, P.R., Wilson, N.R., Macpherson, J.V.: J. Am. Chem. Soc. 127, 10639–10647 (2005)

    Google Scholar 

  73. Hutter, E., Pileni, M.J.: Phys. Chem. B. 107, 6497–6499 (2003)

    Google Scholar 

  74. Sauthier, M.L., Carroll, R.L., Gorman, C.B., Franzen, S.: Langmuir 18, 1825–1830 (2002)

    Google Scholar 

  75. Wang, M., Hu, J., Li, Y., Yeung, E.S.: Nanotechnology 21, 145608 (2010)

    Google Scholar 

  76. Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Angew. Chem. Int. Ed. 43, 458–462 (2004)

    Google Scholar 

  77. Li, Y., Huang, W., Sun, S.: Angew. Chem. Int. Ed. 45, 2537–2539 (2006)

    Google Scholar 

  78. Wang, Y., Chen, H., Wang, E.: Nanotechnology 19, 105604 (2008)

    Google Scholar 

  79. Kolzer: Vacuum Deposition Processes. http://www.kolzer.com/files/vacuum_deposition_guide.PDF (2004)

  80. Huang, H., Zhang, S., Qi, L., Yu, X., Chen, Y.: Surf. Coat. Technol. 200, 4389–4396 (2006)

    Google Scholar 

  81. Kalyuzhny, G., Vaskevich, A., Schneeweiss, M.A., Rubinstein, I.: Chem. A. Eur. J. 8, 3849–3857 (2002)

    Google Scholar 

  82. Jin, Y., Kang, X., Song, Y., Zhang, B., Cheng, G., Dong, S.: Anal. Chem. 73, 2843–2849 (2001)

    Google Scholar 

  83. Hutter, E., Pileni, M.J.: Phys. Chem. B. 107, 6497–6499 (2003)

    Google Scholar 

  84. Day, T.M., Unwin, P.R., Wilson, N.R., Macpherson, J.V.: J. Am. Chem. Soc. 127, 10639–10647 (2005)

    Google Scholar 

  85. Yam, C.M.: Simple acid–base hydrolytic chemistry approach to molecular self-assembly. Ph.D. Dissertation, Department of Chemistry, McGill University (1999)

    Google Scholar 

  86. Mallory, G.O., Hajdu, J.B.: Electroless Plating: Fundamentals and Applications, Chapter 1. American Electroplaters and Surface Finishers Society, Orlando, FL (1990)

    Google Scholar 

  87. Haes, A.J., Hall, W.P., Chang, L., Klein, W.L., Van Duyne, R.P.: Nano Lett. 4, 1029–1034 (2004)

    Google Scholar 

  88. Ferralis, N., Maboudian, R., Carraro, C.J.: Phys. Chem. C 111, 7508–7513 (2007)

    Google Scholar 

  89. Yasseri, A.A., Sharma, S., Jung, G.Y., Kamins, T.I.: Electrochem. Solid-State Lett. 9, C185–C188 (2006)

    Google Scholar 

  90. Zhao, L., Siu, A.C.-L., Petrus, J.A., He, Z., Leung, K.T.J.: Am. Chem. Soc. 129, 5730–5734 (2007)

    Google Scholar 

  91. Brown, K.R., Natan, M.J.: Langmuir 14, 726–728 (1998)

    Google Scholar 

  92. Menzel, H., Mowery, M.D., Cai, M., Evans, C.E.: Adv. Mater. 11, 131–134 (1999)

    Google Scholar 

  93. Hrapovic, S., Liu, Y., Enright, G., Bensebaa, F., Luong, J.H.T.: Langmuir 19, 3958–3965 (2003)

    Google Scholar 

  94. Ali, H.O., Christie, I.R.A.: Gold Bull. 17, 118–127 (1984)

    Google Scholar 

  95. Okinata, Y.: Chapter 15. In: Mallory, G.O., Hajdu, J.B. (eds.) Electroless Plating: Fundamentals and Applications, pp. 401–420. American Electroplaters and Surface Finishers Society, Orlando, FL (1990)

    Google Scholar 

  96. Bhuvana, T., Kulkarni, G.U.: Bull. Mater. Sci. 29, 505–511 (2006)

    Google Scholar 

  97. Nishizawa, M., Menon, V.P., Martin, C.R.: Science 268, 700–702 (1995)

    Google Scholar 

  98. Hou, Z., Abbott, N.L., Stroeve, P.: Langmuir 14, 3287–3297 (1998)

    Google Scholar 

  99. Hou, Z., Dante, S., Abbott, N.L., Stroeve, P.: Langmuir 15, 3011–3014 (1999)

    Google Scholar 

  100. Alvarez-Puebla, R.A., Nazri, G.-A., Aroca, R.F.J.: Mater. Chem. 16, 2921–2924 (2006)

    Google Scholar 

  101. Ferralis, N., Maboudian, R., Carraro, C.J.: Phys. Chem. C 111, 7508–7513 (2007)

    Google Scholar 

  102. Perea-Lopez, N., Rakov, N., Xiao, M.: Rev. Sci. Instrum. 73, 4399–4401 (2002)

    Google Scholar 

  103. Dubrovsky, T.B., Hou, Z., Stroeve, P., Abbott, N.L.: Anal. Chem. 71, 327–332 (1999)

    Google Scholar 

  104. Lauer, M.E., Jungmann, R., Kindt, J.H., Magonov, S., Fuhrhop, J.-H., Oroudjev, E., Hansma, H.G.: Langmuir 23, 5459–5465 (2007)

    Google Scholar 

  105. Habennicht, A., Olapinski, M., Burmeister, F., Leiderer, P., Boneberg, J.: Science 309, 2043–2045 (2005)

    Google Scholar 

  106. Goldstein, A.N., Echer, C.M., Alivisatos, A.P.: Science 256, 1425–1427 (1992)

    Google Scholar 

  107. Buffat, P., Borel, J.-P.: Phys. Rev. A 13, 2287–2298 (1976)

    Google Scholar 

  108. Ajayan, P.M., Marks, L.D.: Phys. Rev. Lett. 60, 585–587 (1988)

    Google Scholar 

  109. Kotaidis, V., Dahmen, C., von Plessen, G., Springer, F., Plech, A.: J. Chem. Phys. 124, 184702 (2006)

    Google Scholar 

  110. Kohli, P., Harrell, C.C., Cao, Z., Gasparac, R., Tan, W., Martin, C.R.: Science 305, 984–986 (2004)

    Google Scholar 

  111. Koura, N.: Chapter 17. In: Mallory, G.O., Hajdu, J.B. (eds.) Electroless Plating: Fundamentals and Applications, pp. 441–462. American Electroplaters and Surface Finishers Society, Orlando, FL (1990)

    Google Scholar 

  112. Martin, P.M.: Chapter 12. In: Handbook of Deposition Technologies for Films and Coating-Science, Applications and Technologies, 3nd ed. Elsevier (2010)

    Google Scholar 

  113. Kaiser, N.: Appl. Opt. 41(16), 3053–3060 (2002)

    Google Scholar 

  114. Gilmer, G.H., Huang, H., Rubia, T., Torre, J.D., Baumann, F.: Thin Solid Films 365, 189–200 (2000)

    Google Scholar 

  115. Kastner, M., Voigtlander, B.: Phys. Rev. Lett. 82(13), 2745–2748 (1999)

    Google Scholar 

  116. Kodambaka, S., Chopp, D.L., Petrov, I., Greene, J.E.: Surf. Sci. 540, L611–L616 (2003)

    Google Scholar 

  117. Pederson, L.R.: Solar Energy Mater. 6, 221–232 (1982)

    Google Scholar 

  118. Hou, Z., Abbott, N.L., Stroeve, P.: Langmuir 14, 3287–3297 (1998)

    Google Scholar 

  119. Menon, V.P., Martin, C.R.: Anal. Chem. 67, 1920–1928 (1995)

    Google Scholar 

  120. McDermott, J.: Plating of Plastics with Metals, pp. 180–182. Noyes Data Corp., Park Ridge, NJ (1974)

    Google Scholar 

  121. Mallory, G.O., Hajdu, J.B.: Electroless plating: fundamentals and applications, Chapter 17. American Electroplaters and Surface Finishers Society, Orlando, FL (1990)

    Google Scholar 

  122. Pederson, L.R.: Solar Energy Mater. 6, 221–232 (1982)

    Google Scholar 

  123. Park, H., Park, H., Hill, R.H.: Sens. Actuators A 132, 429–433 (2006)

    Google Scholar 

  124. Tan, B., Toman, E., Li, Y., Wu, Y.J.: Am. Chem. Soc. 129, 4162–4163 (2007)

    Google Scholar 

  125. Jang, G., Hawkridge, M., Roper, D.K.: Silver disposition and dynamics during electroless metal thin film synthesis. J. Mater. Chem. 22, 21942–21953 (2012)

    Google Scholar 

  126. Pederson, L.R.: Solar Energy Mater. 6, 221–232 (1982)

    Google Scholar 

  127. Singer, R.R., Leitner, A., Aussenegg, F.R.J.: Opt. Soc. Am. B 12, 220–228 (1995)

    Google Scholar 

  128. Baba, K., Okuno, T., Miyagi, M.: Appl. Phys. Lett. 62(5), 437–439 (1993)

    Google Scholar 

  129. Jiang, P., McFarland, M.J.: Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 126(42), 13778–86 (2004)

    Google Scholar 

  130. Dejarnette, D., Roper, D.K., Harbin, B.: Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays. J. Opt. Soc. Am. B 29(1), 88–100 (2012)

    Google Scholar 

  131. Blake, P., Obermann, J., Harbin, B., Roper, D.K.: Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors. IEEE Sens. J. 11(12), 3332–3340 (2011)

    Google Scholar 

  132. Li, H., Low, J., Brown, K.S., Wu, N.: Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template. IEEE Sens. 8(6), 880–884 (2008)

    Google Scholar 

  133. Pan, F., Zhang, J., Cai, C., Wang, T.: Rapid fabrication of large-area colloidal crystal monolayers by a vortical surface method. Langmuir 22(17), 7101–7104 (2006)

    Google Scholar 

  134. Chen, K., Drachev, V.P., Borneman, J.D., Kildishev, A.V., Shalaev, V.M.: Nano Lett. 10, 916–922 (2010)

    Google Scholar 

  135. Ahn, W., Blake, P., Schulz, J., Ware, M.E., Roper, D.K.: Fabrication of regular arrays of Au nanospheres by thermal transformation of electroless-plated films. J. Vac. Sci. Technol. B 28(3), 638–642 (2010)

    Google Scholar 

  136. Zhang, G., Wang, D., Möhwald, H.: Nano Lett. 7, 127–132 (2007)

    Google Scholar 

  137. Goncalves, M.R., Siegel, A., Marti, O.: J. Microsc. 229, 475–482 (2008)

    Google Scholar 

  138. Doron-Mor, I., Barkay, Z., Filip-Granit, N., Vaskevich, A., Rubinstein, I.: Chem. Mater. 16, 3476–3483 (2004)

    Google Scholar 

  139. Doron-Mor, I., Cohen, H., Barkay, Z., Shanzer, A., Vaskevich, A., Rubinstein, I.: Ehcm. Eur. J. 11, 5555–5562 (2005)

    Google Scholar 

  140. Kalyuzhny, G., Vaskevich, A., Schneeweiss, M.A., Rubinstein, I.: Chem. A. Eur. J. 8, 3849–3857 (2002)

    Google Scholar 

  141. Kalyuzhny, G., Vaskevich, A., Ashkenasy, G., Shanzer, A., Rubinstein, I.J.: Phys. Chem. B 104, 8238–8244 (2000)

    Google Scholar 

  142. Ahn, W., Roper, D.K.: Periodic nanotemplating by selective deposition of electroless gold island films on particle-lithographed dimethyldichlorosilane layers. ACS Nano 4(7), 4181–9 (2010)

    Google Scholar 

  143. Zhang, Q., Xu, J., Liu, Y., Chen, H.: In-situ synthesis of poly(dimethylsiloxane) – gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 8, 352–357 (2008)

    Google Scholar 

  144. Goyal, A., Kumar, A., Patra, P.K., Mahendra, S., Tabatabaei, S., Alvarez, P.J., John, G., Ajayan, P.M.: In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films. Macromol. Rapid Commun. 30, 1116–1122 (2009)

    Google Scholar 

  145. Massaro, A., Spano, F., Cingolani, R., Athanassiou, A.: Experimental optical characterization and polymeric layouts of gold PDMS nanocomposite sensor for liquid detection. IEEE Sens. 11(9), 1780–1786 (2011)

    Google Scholar 

  146. Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yagmaie, F., Gusman, A.M.: In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing. Smart Struct. Syst. 8(5), 471–486 (2011)

    Google Scholar 

  147. Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdiv. 7(4), 281–93 (2005)

    Google Scholar 

  148. Yu, X., Zhang, D., Li, T., Hao, L., Li, X.: 3-D microarrays biochip for DNA amplification in polydimethylsiloxane (PDMS) elastomer. Sens. Actuators A 108, 103–107 (2003)

    Google Scholar 

  149. Massaro, A., Spano, F., Cingolani, R., Athanassiou, A.: Experimental optical characterization and polymeric layouts of gold PDMS nanocomposite sensor for liquid detection. IEEE Sens. 11(9), 1780–1786 (2011)

    Google Scholar 

  150. Jo, B., Lerberghe, L.M.V., Motsegood, K.M., Beebe, D.J.: Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectomech. Syst. 9(1), 76–81 (2000)

    Google Scholar 

  151. Sawano, S., Naka, K., Werber, A., Zappe, H., Konishi, S.: Sealing method of PDMS as elastic material for MEMS. In: Proceedings of the IEEE 21st international conference on MEMS, pp. 419–422, 13–17 Jan 2008

    Google Scholar 

  152. Schneider, F., Draheim, J., Kamberger, R., Wallrabe, U.: Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A 151, 95–99 (2009)

    Google Scholar 

  153. Schneider, F., Fellner, T., Wilde, J., Wallrabe, U.: Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 18, 065008 (2008)

    Google Scholar 

  154. Tong, J., Simmons, C.A., Sun, Y.: Precision patterning of PDMS membranes and applications. J. Micromech. Microeng. 18, 037004 (2008)

    Google Scholar 

  155. Tung, Y., Kurabayashi, K.: A single-layer PDMS-on-silicon hybrid microactuator with multi-axis out-of-plane motion capabilities – part I: design and analysis. J. Microelectromech. Syst. 14(3), 548–557 (2005)

    Google Scholar 

  156. Berry, K.R., Russell, A.G., Blake, P., Roper, D.K.: Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties. Nanotechnology 23, 375703 (2012)

    Google Scholar 

  157. Scott, A., Gupta, R., Kulkarni, G.: A simple water-based synthesis of Au nanoparticle/PDMS composites for water purification and targeted drug release. Macromol. Chem. Phys. 211, 1640–1647 (2010)

    Google Scholar 

  158. Roper, D.K., Ahn, W., Hoepfner, M.: Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111(9), 3636–3641 (2007)

    Google Scholar 

  159. Ahn, W., Roper, D.K.: Transformed gold island film improves light-to-heat transduction of nanoparticles on silica capillaries. J. Phys. Chem. C 112(32), 12214–12218 (2008)

    Google Scholar 

  160. Russell, A., McKnight, M., Sharp, A., Hestekin, J., Roper, D.K.: Gold nanoparticles allow opto-plasmonic evaporation from open silica cells. J. Phys. Chem. C 114(22), 10132–10139 (2010)

    Google Scholar 

  161. Russell, A.G., McKnight, M., Hestekin, J., Roper, D.K.: Thermodynamics of optoplasmonic heating in fluid filled gold nanoparticle plated capillaries. Langmuir 27(12), 7799–7805 (2011)

    Google Scholar 

  162. Garwe, F., Bauerschäfer, U., Csaki, A., Steinbrück, A., Ritter, K., Bochmann, A., Bergmann, J., Weise, A., Akimov, D., Maubach, G., König, K., Hüttmann, G., Paa, W., Popp, J., Fritzsche, W.: Optically controlled thermal management on the nanometer length scale. Nanotechnology 19, 055207 (2008)

    Google Scholar 

  163. Zeng, N., Murphy, A.: Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination. Nanotechnology 20, 375702 (2009)

    Google Scholar 

  164. Vanherck, K., Hermans, S., Verbiest, T., Vankelecom, I.: Using the photothermal effect to improve membrane separations via localized heating. J. Mater. Chem. 21, 6079–6087 (2011)

    Google Scholar 

  165. Jiang, C., Markutsya, S., Pikus, Y., Tsukruk, V.V.: Freely suspended nanocomposite membranes as highly sensitive sensors. Nat. Mater. 3, 721–728 (2004)

    Google Scholar 

  166. Kang, S.W., Hong, J., Park, J.H., Mun, S.H., Kim, J.H., Cho, J., Char, K., Kang, Y.S.: Nanocomposite membranes containing positively charged polarized gold nanoparticles for facilitated olefin transport. J. Membr. Sci. 321, 90–93 (2008)

    Google Scholar 

  167. Lim, D.K., Jeon, K.S., Hwang, J.H., Kim, H., Kwon, S., Suh, Y.D., Nam, J.M.: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6, 452–460 (2011)

    Google Scholar 

  168. Dallas, P., Georgakilas, V., Niarchos, D., Komninou, P., Kehagias, T., Petridis, D.: Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology 17, 2046–2053 (2006)

    Google Scholar 

  169. Garwe, F., Bauerschäfer, U., Csaki, A., Steinbrück, A., Ritter, K., Bochmann, A., Bergmann, J., Weise, A., Akimov, D., Maubach, G., König, K., Hüttmann, G., Paa, W., Popp, J., Fritzsche, W.: Optically controlled thermal management on the nanometer length scale. Nanotechnology 19, 055207 (2008)

    Google Scholar 

  170. Schlemmer, C., Betz, W., Berchtold, B., Rüne, J., Santer, S.: The design of thin polymer membranes filled with magnetic particles on a microstructured silicon surface. Nanotechnology 20, 255301 (2009)

    Google Scholar 

  171. Vanherck, K., Hermans, S., Verbiest, T., Vankelecom, I.: Using the photothermal effect to improve membrane separations via localized heating. J. Mater. Chem. 21, 6079–6087 (2011)

    Google Scholar 

  172. Scott, A., Gupta, R., Kulkarni, G.: A simple water-based synthesis of Au nanoparticle/PDMS composites for water purification and targeted drug release. Macromol. Chem. Phys. 211, 1640–1647 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Keith Roper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roper, D.K. (2013). Self-Assembly of Nanodroplets in Nanocomposite Materials in Nanodroplets Science and Technology. In: Wang, Z. (eds) Nanodroplets. Lecture Notes in Nanoscale Science and Technology, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9472-0_4

Download citation

Publish with us

Policies and ethics