Skip to main content

Dynamic Study of Nanodroplet Nucleation and Growth Using Transmitted Electrons in ESEM

  • Chapter
  • First Online:
Nanodroplets

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 18))

Abstract

Experimental methods for wettability research are reviewed. A novel method for quantitative wettability study at nanoscale is presented. It is based on measuring transmitted electrons through nanodroplets using wet scanning transmission electron microscope (wet-STEM) detector in environmental scanning electron microscope (ESEM). The quantitative information of the nanodroplet shape and contact angle is obtained by fitting Monte Carlo simulation results for transmitted electrons with experimental results. Dynamic in situ imaging has showed that irregularities at the water film boundaries constituted nucleation sites for both dropwise and filmwise condensation. The initial stages of nucleation, growth, and coalescence have been studied as well as the growth power law dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AFM:

Atomic force microscope

BF:

Bright field

EM:

Electron microscope

ESEM:

Environmental scanning electron microscope

ETEM:

Environmental TEM

FEG:

Field emission gun

MC:

Monte Carlo

MEMS and NEMS:

Micro/nano electromechanical systems

RH:

Relative humidity

RTD:

Resistive temperature device

SEM:

Scanning electron microscope

TEM:

Transmitted electron microscope

Wet-STEM:

Wet scanning transmission electron microscope

References

  1. Quéré, D.: Surface wetting: model droplets. Nat. Mater. 3, 79–80 (2004)

    Article  Google Scholar 

  2. De Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York, NY (2004)

    Book  Google Scholar 

  3. Bico, J., Thiele, U., Quéré, D.: Wetting of textured surfaces. Colloids Surf. A 206, 41–46 (2002)

    Article  Google Scholar 

  4. Bormashenko, E., Pogreb, R., Whyman, G., Erlich, M.: Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir 23, 6501–6503 (2007)

    Article  Google Scholar 

  5. Nosonovsky, M., Bhushan, B.: Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007)

    Article  Google Scholar 

  6. Berthier, J., Brakke, K.A.: The Physics of Microdroplets. Wiley, Hoboken, NJ (2012)

    Book  Google Scholar 

  7. Aronov, D., Rosenman, G., Barkay, Z.: Wettability study of modified silicon dioxide surface using environmental scanning electron microscope. J. Appl. Phys. 101, 084901–084905 (2007)

    Article  Google Scholar 

  8. Mendez-Vilaz, A., Jodar-Reyes, A.B., Gonzalez-Martin, M.L.: Ultrasmall liquid droplets on solid surfaces: production, imaging, and relevance for current wetting research. Small 5, 1366–1390 (2009)

    Article  Google Scholar 

  9. Tsekov, R., Stockelhuber, K.W., Toshev, B.V.: Disjoining pressure and surface tension of small drops. Langmuir 16, 3502–3505 (2000)

    Article  Google Scholar 

  10. Satter, K.D.: Handbook of Nanophysics: Principles and Methods. CRC, Boca Raton, FL (2011)

    Google Scholar 

  11. Rauscher, M., Dietrich, S.: Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res. 38, 1–36 (2008)

    Article  Google Scholar 

  12. Tsekov, R., Toshev, B.V.: Capillary pressure of van der Waals liquid nanodrops. Colloid J. 74, 266–268 (2012)

    Article  Google Scholar 

  13. Sarid, D.: Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces. Oxford University Press, New York, NY (1994)

    Google Scholar 

  14. Salmeron, M.: Scanning polarization force microscopy: a technique for studies of wetting phenomena at the nanometer scale. Oil Gas Sci. Technol. 56, 63–75 (2001)

    Article  Google Scholar 

  15. Williams, D.B., Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science. Plenum, New York, NY (1996)

    Book  Google Scholar 

  16. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., Michael, J.: Scanning Electron Microscopy and X-ray Microanalysis. Plenum, New York, NY (2003)

    Book  Google Scholar 

  17. Grogan, J.M., Rotkina, L., Bau, H.: In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E 83, 061405/1–061405/5 (2011)

    Article  Google Scholar 

  18. Ruach-Nir, I., Zrihan, O., Tzabari, Y.: A capsule for dynamic in-situ studies of hydration processes by conventional SEM. Microsc. Anal. 20, 19–21 (2006)

    Google Scholar 

  19. Kishita, K., Sakai, H., Tanaka, H., Saka, H., Kuroda, K., Sakamoto, K., Watabe, H., Kamino, K.: Development of an analytical environmental TEM system and its application. J. Electron Microsc. 58, 331–339 (2009)

    Article  Google Scholar 

  20. Stokes, D.J.: Principles and Practice of Variable Pressure/Environmental Electron Microscopy. Wiley, Chichester (2008)

    Book  Google Scholar 

  21. Leary, R., Brydson, R.: Characterisation of ESEM conditions for specimen hydration control. J. Phys. Conf. Ser. 241, 012024/1–012024/4 (2010)

    Google Scholar 

  22. Stelmashenko, N.A., Craven, J.P., Donald, A.M., Terentjev, E.M., Thiel, B.L.: Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy. Microscopy 204, 172–183 (2001)

    Article  Google Scholar 

  23. Brugnara, M., Volpe, C.D., Siboni, S., Zeni, D.: Contact angle analysis on polymethylmethacrylate and commercial wax by using environmental scanning electron microscope. Scanning 28, 267–273 (2006)

    Article  Google Scholar 

  24. Bormashenko, E., Pogreb, R., Whyman, G., Musin, A., Bormashenko, Y., Barkay, Z.: Shape, vibrations, and effective surface tension of water marbles. Langmuir 25, 1893–1896 (2009)

    Article  Google Scholar 

  25. Rossi, M.P., Ye, H., Gogotsi, Y., Babu, S., Ndungu, P., Bradley, J.C.: Environmental scanning electron microscope of water in carbon nanopipes. Nano Lett. 4, 989–993 (2004)

    Article  Google Scholar 

  26. Jung, Y.C., Bhushan, B.: Wetting behavior during condensation and evaporation of water microdroplets on superhydrophobic pattered surfaces. J. Microsc. 229, 127–140 (2008)

    Article  Google Scholar 

  27. Egerton, R.F., Li, P., Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004)

    Article  Google Scholar 

  28. Royall, C.P., Thiel, B.L., Donald, A.M.: Radiation damage of water in environmental scanning electron microscopy. J. Microsc. 204, 185–195 (2001)

    Article  Google Scholar 

  29. Lin, T.P.: Estimation of temperature rise in electron beam heating of thin films. IBM J. Res. Dev. 11, 527–536 (1967)

    Article  Google Scholar 

  30. Rykaczewski, K., Scott, J.H.J., Fedorov, A.G.: Electron beam heating effects during environmental scanning electron microscopy of water condensation on superhydrophobic surfaces. Appl. Phys. Lett. 98, 093106–093109 (2011)

    Article  Google Scholar 

  31. Bogner, A., Jouneau, P.H., Thollet, G., Basset, D., Gauthier, C.: A history of scanning electron microscopy developments: towards “wet-STEM” imaging. Micron 38, 390–401 (2007)

    Article  Google Scholar 

  32. Bogner, A., Thollet, G., Basset, D., Jouneau, P.H., Gauthier, C.: Wet-STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290–301 (2005)

    Article  Google Scholar 

  33. Amaral, M., Borger, A., Gauthier, C., Thollet, G., Jouneau, P.H., Cavaille, J.Y., Asua, J.M.: Novel experimental technique for the determination of monomer drop size distribution in miniemulsion. Macromol. Rapid Commun. 26, 365–368 (2005)

    Article  Google Scholar 

  34. Maraloiu, V.A., Hamoudeh, M., Fessi, H., Blanchin, M.G.: Study of magnetic nanovectors by wet-STEM, a new ESEM mode in transmission. J. Colloid Interface Sci. 352, 386–392 (2010)

    Article  Google Scholar 

  35. Barkay, Z., Rivkin, I., Margalit, R.: Three-dimensional characterization of drug-encapsulating particles using STEM detector in FEG-SEM. Micron 40, 480–485 (2009)

    Article  Google Scholar 

  36. Probst, C., Gauvin, R., Drew, R.A.L.: Imaging of carbon nanotubes with tin–palladium particles using stem detector in a FE-SEM. Micron 38, 402–408 (2007)

    Article  Google Scholar 

  37. Anand, S., Son, S.Y.: Sub-micrometer dropwise condensation under superheated and rarefied vapor condition. Langmuir 26, 17100–17110 (2010)

    Article  Google Scholar 

  38. Bormashenko, E.: Correct values of Rayleigh and Marangoni numbers for liquid layers deposited on thin substrates. Ind. Eng. Chem. Res. 47, 1726–1728 (2008)

    Article  Google Scholar 

  39. James, D.W.: The thermal diffusivity of ice and water between −40 and +60°C. J. Mater. Sci. 3, 540–543 (1968)

    Article  Google Scholar 

  40. Barkay, Z.: Quantitative wettability study using transmission electrons in environmental scanning electron microscope. Appl. Phys. Lett. 96, 183109/1–183109/3 (2010)

    Article  Google Scholar 

  41. Joy, D.C.: An introduction to Monte Carlo simulations. Scanning Microsc. 5, 329–337 (1991)

    Google Scholar 

  42. Barkay, Z.: Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films. Langmuir 26, 18581–18584 (2010)

    Article  Google Scholar 

  43. Zhao, H., Beysens, D.: From droplet growth to film growth on a heterogeneous surface: condensation associated with a wettability gradient. Langmuir 11, 627–634 (1995)

    Article  Google Scholar 

  44. Leach, R.N., Stevens, F., Langford, S.C., Dickinson, J.T.: Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22, 8864–8872 (2006)

    Article  Google Scholar 

  45. Fritter, D., Knobler, C.M., Beysens, D.A.: Experiments and simulation of the growth of droplets on a surface (breath figures). Phys. Rev. A 43, 2858–2869 (1991)

    Article  Google Scholar 

  46. Moosavi, A., Rauscher, M., Dietrich, S.: Dynamics of nanodroplets on topographically structured substrates. Langmuir 24, 734–742 (2008)

    Article  Google Scholar 

  47. Barkay, Z.: Quantitative wettability study at nanometer scale based on WetSTEM in ESEM. Microsc. Microanal. 18(Suppl 2), 1134–1135 (2012)

    Article  Google Scholar 

  48. Hamill, P.J.: The time dependent growth of H2O-H2SO4 aerosols by heteromolecular condensation. Aerosol Sci. 6, 475–482 (1975)

    Article  Google Scholar 

  49. Narhe, R., Beysens, D., Nikolayev, V.S.: Dynamics of drop coalescence on a surface: the role of initial conditions and surface properties. Int. J. Thermophys. 26, 1743–1757 (2005)

    Article  Google Scholar 

  50. Li, R., Ashgriz, N., Chandra, S., Andrews, J.R., Drappel, S.: Coalescence of two droplets impacting a solid surface. Exp. Fluids 48, 1025–1035 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the “Center of Nanoscience and Nanotechnology” and the “Wolfson Applied Materials Research Center” at Tel-Aviv University for the ESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahava Barkay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barkay, Z. (2013). Dynamic Study of Nanodroplet Nucleation and Growth Using Transmitted Electrons in ESEM. In: Wang, Z. (eds) Nanodroplets. Lecture Notes in Nanoscale Science and Technology, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9472-0_3

Download citation

Publish with us

Policies and ethics