Skip to main content

Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses, Volume 1

Abstract

Salinization of soil is one of the main threats for the development and maintenance of agricultural systems. Climate change will even increase soil salinity further. Soil salinity affects the establishment, growth, and development of crops and can result in severe yield reduction. Fortunately, the plant root contains beneficial microbes. These microbes, including plant growth-promoting rhizobacteria (PGPR) are able to promote plant growth and protect plants against various soilborne pathogens and can help plants to adapt to a number of environmental stresses. The mechanisms of alleviation of salt stress and plant growth promotion by PGPR include the production of phytohormones and the enzyme ACC deaminase, and competition for nutrient and niches. Increasing our understanding of the modes of action of these mechanisms will open new doors for proposing strategies to improve the efficacy of PGPR. For example, more detailed studies are needed on the role of abiotic factors in altering the activity of rhizobacteria and on managing plant–microbe interactions with respect to their adaptability to extreme conditions. This chapter provides a brief overview of our present knowledge of the alleviation of salt stress in plants by PGPR and the action modes of these PGPR under salt-stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspoor A, Asl MHA (2009) The efficiency of plant growth promoting rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am Euras J Sust Agric 3(4):824–828

    Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    PubMed  CAS  Google Scholar 

  • Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    PubMed  CAS  Google Scholar 

  • Al-Mutawa MM (2003) Effect of salinity on germination and seedling growth of chick pea (Cier arietinum L.) genotypes. Int J Agro Biol 5:227–229

    Google Scholar 

  • Anonymous (1998) Sichere biotechnologie. Eingruppierung biologischer Agenzien: Bacterien, BG Chemie, Merkblatt B 006 8/98 ZH 1/346, Jedermann-Verlag Dr. Otto Pfeffer oHG, Heidelberg, Germany

    Google Scholar 

  • Araus JL, Slafer GA, Royo C, Dolores Serret M (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

    Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, Lopez-Climent MF, Talon M, Gomez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Reg 46:153–160

    CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EVA, Melentiev I, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    CAS  Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytopthora capsisi. World J Microbiol Biotechnol 24:581–585

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Google Scholar 

  • Ashraf M (2004) Photosynthetic capacity and ion accumulation in a medicinal plant henbane (Hyoscyamus niger L.) under salt stress. J Appl Bot 78:91–96

    CAS  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    CAS  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Cikili Y, Ciftci CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of triticale. Turk J Agric 30:39–47

    CAS  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (zea mays l.) under drought stress. Pak J Bot 45(S1):13–20

    Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Env Microb 70:7246–7252

    Google Scholar 

  • Bastos AER, Moon DH, Rossi A, Trevors JT, Tsai SM (2004) Salt-tolerant phenol degrading microorganisms from Amazonian soil samples. Arch Microb 174:346–352

    Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under salinated conditions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 561–573

    Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29(2):379–387

    PubMed  CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3- acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    PubMed  CAS  Google Scholar 

  • Bianco C, Defez R (2012) Soil bacteria support and protect plants against abiotic stresses. In: A Shanker, B Venkateswarlu (eds) Abiotic stress in plants—Mechanisms and Adaptations. doi:10.5772/23310

  • Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Phys 162:1103–1113

    CAS  Google Scholar 

  • CFS (2012) Committee on world food security, final report 39, 15–20 October, Rome Italy. http://www.fao.org/fileadmin/user_upload/bodies/CFS_sessions/39th_Session/39emerg/MF027_CFS_39_FINAL_REPORT_compiled_E.pdf

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Compant SW, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microb 71:4951–4959

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Google Scholar 

  • Dantas BF, Sa Ribeiro L, Aragao CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Brasil Semen 27(1):144–148

    Google Scholar 

  • Dardanelli MS, De Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Bioch 40:2713–2721

    CAS  Google Scholar 

  • Demir I, Arif I (2003) Effect of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turkish J Agric 27:221–227

    Google Scholar 

  • Diby P, Anandaraj M, Kumar A, Sarma YR (2005) Antagonistic mechanisms of fluorescent pseudomonads against Phytophthora capsici in black pepper (Piper nigrum Linn.). J Spices Arom Crop 14(2):94–101

    Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial alleviation of crop salinity. J Exp Bot 63:3415–3428

    PubMed  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov A (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    CAS  Google Scholar 

  • Dolatabadian A, ModarresSanavy SAM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Biol 3:41–45

    Google Scholar 

  • Dwivedi S, Upadhyaya H, Subudhi P, Gehring C, Bajic V, Ortiz R (2010) Enhancing abiotic stress tolerance in cereals through breeding and transgenic interventions. In: Janick (ed) Plant Breeding Rev 33, Wiley, Hoboken. doi:10.1002/9780470535486.ch2

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Phys Plant 31:861–864

    CAS  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    CAS  Google Scholar 

  • Egamberdieva D, Jabborova D (2013) Biocontrol of cotton damping-off caused by rhizoctonia solani in salinated soil with rhizosphere bacteria. Asian Austral J Plant Scie Biotech 7(2):31–38

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for rot colonising bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:563–571

    Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov SZ, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013a) Alleviation of salt stress of symbiotic Galega officinalis L. (Goat’s Rue) by co-inoculation of rhizobium with root colonising Pseudomonas. Plant Soil. doi:10.1007/s11104-013-1586-3

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013b) Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress condition. Med Aromat Plant Sci Biotechnol 7(1):7–10

    Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003) Influence of growth promoting bacteria on the growth of wheat at different soils and temperatures. Soil Biol Bioch 35:973–978

    CAS  Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 257–281

    Google Scholar 

  • Egamberdiyeva D, Qarshieva D, Davranov K (2004) Growth and yield of soybean varieties inoculated with Bradyrhizobium spp. in N-deficient calcareous soils. Biol Fertil Soils 40:144–146

    Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in central Asia. Taylor-Francis, New York, pp 147–162

    Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max (L.) Merrill) cultivars. J Agron Crop Scie 188(2):86–93

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    PubMed  CAS  Google Scholar 

  • FAO (2008) Land and plant nutrition management service. www.fao.org/ag/agl/agll/spush

  • Figueiredo MV, Burity HA, Martınez CR, Chanway C (2008) Alleviation of drought stress in the common bean Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 4:182–188

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Fukui R, Schroth MN, HendsonMand Hancock JG (1994) Interaction between strains of pseudomonads in sugar beet spermospheres and their relationship to pericarp colonization by Pythium ultimum in soil. Phytopathology 84:1322–1330

    Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthid soil. Plant Soil 178:225–263

    Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC-deaminase. FEMS Microb Lett 251:1–7

    CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    PubMed  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Bioch 29:1233–1239

    CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Golpayegani A, Tilebeni HG (2011) Effect of biological fertilizers on biochemical and physiological parameters of Basil (Ociumum basilicm L.) Medicine Plant. Am–Eur J Agric. Environ Sci 11(3):411–416

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1(3):210–215

    Google Scholar 

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum aestvum seedlings under Cr-stress by nonrhizospheric Pseudomonas strains. Abstract Book of 7th Int Symp on Nitrogen Fixation with Non-legumes. Faisalabad, Pakistan. pp 36

    Google Scholar 

  • Heidari M, Jamshid P (2010) Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. J Agric Biol Sci 5:39–46

    Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. J Agr Biol Sci 6(5):6–11

    Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter bessonderer Berucksichtigung der Grundung und Brache. Arb Deutsch Landwirtsch Ges Berl 98:59–78

    Google Scholar 

  • Horneck DA, Ellsworth JW, Hopkins BG, Sullivan DM, Stevens RG (2007) Managing salt-affected soils for crop production. PNW 601-E, http://extension.oregonstate.edu/catalog/pdf/pnw/pnw601-e.pdf

  • ICID (2009) International commission on irrigation and drainage in agriculture. Available from http://www.icid.org/imp_data.pdf

  • Itai C, Richmond AE, Vaada Y (1968) The role of root cytokinins during water and salinity stress. Israel J Bot 17:187–195

    Google Scholar 

  • Jablasone J, Warrinera K, Griffithsa M (2005) Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int J Food Microbiol 99:10–18

    Google Scholar 

  • Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rhal ES (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:273–282

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2010) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Phys Plant 33:797–802

    Google Scholar 

  • Ji P, Wilson M (2002) Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. App Env Microb 68:4383–4389

    CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    PubMed  CAS  Google Scholar 

  • Kandowangko NY, Suryatmana G, Nurlaeny N, Simanungkalit RDM (2009) Proline and abscisic acid content in droughted corn plant inoculated with Azospirillum sp. and arbuscular mycorrhizae fungi. Hayati. J Biosci 16(1):15–20

    Google Scholar 

  • Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agri Soci Sci 2:216–218

    Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H, Niwa S, Ikuta A, Syono K, Akao S (2002) Root, root hair and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26

    PubMed  CAS  Google Scholar 

  • Kaya C, Ak BE, Higgs D (2003) Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J Plant Nutr 26(3):543–560

    CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Scie 40:482–487

    CAS  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldàn A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Bioch 42:429–434

    CAS  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerants gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Proteresia corctata Tateoka). Int J Syst Evol Microb 54:1185–1190

    CAS  Google Scholar 

  • Lugtenberg BJJ, Kamilova FD (2004) Rhizosphere management: microbial manipulation for biocontrol. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 1098–1101

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Ann Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phyt 39:461–490

    CAS  Google Scholar 

  • Lugtenberg B, Malfanova N, Kamilova F, Berg G (2013a) Plant growth promotion by microbes. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 561–573

    Google Scholar 

  • Lugtenberg B, Malfanova N, Kamilova F, Berg G (2013b) Microbial control of plant root diseases. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 575–586

    Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 1–19

    Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Mensah JK, Akomeah PA, Ikhajiagbe B, Ekpekurede EO (2006) Effects of salinity on germination, growth and yield of five groundnut genotypes Afr. J Biotech 5(20):1973–1979

    CAS  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Ann Rev Microb 50:101–136

    PubMed  CAS  Google Scholar 

  • Morales A, Garland JL, Lim DV (1996) Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat. FEMS Microb Ecol 20:155–162

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biology 59:651–681

    CAS  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S. Dommelen AV, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7(4):354–360

    Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    Google Scholar 

  • Nadeem SM, Zahir ZA, Nadeem M, Arshad M (2009) Rhizobacteria containing ACC deaminase confer salt tolerance in maize grown on salt affected soils. Can J Microb 55:1302–1309

    CAS  Google Scholar 

  • Naqvi SM, Ansari R (1974) Estimation of diffusible auxin under saline growth condition. Experientia 30:350

    PubMed  CAS  Google Scholar 

  • Neamatollahi E, Bannayan M, Souhani Darban A, Ghanbari A (2009) Hydropriming and osmopriming effects on cumin (Cuminum Cyminum L.) seeds germination. World Acad Scie Eng Techn 57:526–529

    Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in the rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351

    CAS  Google Scholar 

  • Ofek M, Ruppel S, Waisel Y (2006) Effects of salinity on rhizosphere bacterial communities associated with different root types of Vicia faba L. In: Ozturk M, Waisel Y, Khan A, Gork G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser, Basel, pp 1–21

    Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium contaminated environment. Cereal Res Comm 37:9–12

    CAS  Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al- Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Scie 2(1):11–15

    Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microb 48:1–7

    Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    PubMed  CAS  Google Scholar 

  • Perez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Funct Plant Biol 37:592–603

    CAS  Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Germany, pp 295–343

    Google Scholar 

  • Prakash L, Parthapasenan G (1990) Interactive effect of NaCl salinity and gibberellic acid on shoot growth, content of abscisic acid and gibberellin like substances and yield of rice (Oruza sativa). Plant Sci 100:173–181

    CAS  Google Scholar 

  • Quispel A (1988) Bacteria-plant interactions in symbiotic nitrogen fixation. Physiol Plant 74:783–790

    CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotech 4(3):210–222

    CAS  Google Scholar 

  • Rabie GH, Aboul-Nasr MB, Al-Humiany A (2005) Increase salinity tolerance of cowpea plants by dual inoculation of AM fungus Glomus clarum and nitrogen- fixer Azospirillum brasilense. Mycobiol 33(1):51–61

    CAS  Google Scholar 

  • Rahman MS, Matsumuro T, Miyake H, Takeoka Y (2000) Salinity-induced ultrastructural alternations in leaf cells of rice (Oryza sativa L.). Plant Prod Sci 3:422–429

    Google Scholar 

  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int J Agri Biol 10:451–454

    Google Scholar 

  • Rekha PD, Lai WA, Arun AB, Young CC (2007) Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic condition. Bio Res Tech 98:447–451

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bo 57:1017–1023

    Google Scholar 

  • Roberts DP, Dery PD, Yucel I, Buyer JS (2000) Importance of pfk A for rapid growth of Enterobacter cloacae during colonization of crop seed. Appl Env Microbiol 66:87–91

    CAS  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Muhammadi G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eur J Agr Env Sci 3(2):253–257

    Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 314–319

    Google Scholar 

  • Sanchez-Porro C, Martın S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300

    PubMed  CAS  Google Scholar 

  • Sandhya V, SkZ Ali, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fert Soil 46:17–26

    CAS  Google Scholar 

  • Sandhya V, SkZ Ali, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Reg 62:21–30

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    PubMed  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Env 25:333–341

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159

    PubMed  CAS  Google Scholar 

  • Shahzad SM, Khalid A, Arshad M, Kalil-ur-Rehman (2010) Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil Env 29(1):38–46

    Google Scholar 

  • Shanker AK, Venkateswarlu B (2011) Abiotic stress in plants-mechanisms and adaptations. InTech Publisher, Janeza Tridne Rijeka, Croatia, pp 428

    Google Scholar 

  • Shaterian J, Waterer D, De-Jong H, Tanino KK (2005) Differential stress response to NaCl salt application in early and late maturing diploid potato (Solanum sp.) clones. Envir Exper Bot 54:202–212

    CAS  Google Scholar 

  • Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irr Drain Sys 14:199–205

    Google Scholar 

  • Singleton PW, Bohlool B (1984) Effect of salinity on the nodule formation by soybean. Plant Physiol 74:72–76

    PubMed  CAS  Google Scholar 

  • Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scien Hort 97:229–237

    CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Wilhelm E, Sessitsch A (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microb 53:1195–1202

    CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    PubMed  CAS  Google Scholar 

  • Tilak KVB, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    CAS  Google Scholar 

  • Tripathi AK, Mishra BM, Tripathi P (1998) Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum sp. J Biosci 23:463–471

    CAS  Google Scholar 

  • Tripathi AK, Verma SC, Ron EZ (2002) Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res Microb 153:579–584

    CAS  Google Scholar 

  • Turnbull GA, Morgan JA, Whipps JM, Saunders JR (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol Ecol 36(1):21–31

    PubMed  CAS  Google Scholar 

  • Valverde A, Velazquez E, Santos FF, Vizcaino N, Rivas R, Mateos PF, Molina EM, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    PubMed  CAS  Google Scholar 

  • Van Overbeek LS, Van Elsas JD (1997) Adaptation of bacteria to soil conditions: applications of molecular physiology in soil microbiology. In: Van Elsas JD, Wellington EMH, Trevors JT (eds) Modern Soil Microbiology. Marcel Dekker Inc, New York, pp 441–447

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    PubMed  CAS  Google Scholar 

  • Wehrheim P, Martius C (2008) Farmers, cotton, water, and models Introduction and overview. In: Wehrheim P, Schoeller-Schletter A, Martius C (eds) Continuity and change: Land and water use reforms in rural Uzbekistan Socioeconomic and legal analyses for the region Khorezm. Halle/Saale, IAMO, pp 1–16

    Google Scholar 

  • Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol Plant 93:659–666

    CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Salt-stress signal transduction. In: Scheel D, Wasternack C (eds) Plant signal transduction. frontiers in molecular biology series. Oxford University Press, Oxford, pp 165–197

    Google Scholar 

  • Xu GY, Rocha PS, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    PubMed  CAS  Google Scholar 

  • Yadegari M, Rahmani A (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5:792–799

    Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of Rhizobacteria isolated from sweet potato rhizosphere. J Biotech 6:49–52

    Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plants under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Yildirim E, Donmez MF, Turan M (2008) Use of bioinoculants in ameliorative effects on radish (Raphanus sativus L.) plants under salinity stress. J Plant Nutr 31:2059–2074

    Google Scholar 

  • Yue HT, Mo WP, Li C, Zheng YY, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microb Biotech 18:958–963

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Egamberdieva, D., Lugtenberg, B. (2014). Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9466-9_4

Download citation

Publish with us

Policies and ethics